Actual vs. Programmed Overtravel for Advanced Probe Cards

Tommie Berry - FormFactor Inc.
Keith Breinlinger - FormFactor Inc.

Rey Rincon - Freescale Semiconductor

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 10 - 13, 2012 | San Diego, California

Overview

- Background: What & Why
- Measurement Method
- Review of Data
- Using the Formula
- Summary
- Future Work
- Acknowledgements

What is AOT/POT? Who Cares?

- Are you using more than 3000 probes with ~3 grams per probe?
- Or more than 1000 probes @ 10 grams per probe ?
- Then you should CARE!
- Yield, CRES, \$\$\$

Full Wafer Probe Cards for DRAM & FLASH

- As they moved to high pin counts (>10,000 springs) were forced to accept reality that everything in the system is not infinitely rigid
- Without it, probes would be greatly under-compressed which can lead to CRES and stability issues
- Many SOC customers are now using spring counts high enough that they need to consider AOT/POT.
 - Previous assumption was "What I program on the prober is what the spring is compressed."
 - When AOT/POT goes below 80-90% this is a poor assumption.

Terminology

AOT = Actual Over Travel of the probe springs

POT = Programmed Over Travel as entered on the prober

k_{total} = spring constant for total system

k_{spring} = spring constant for 1 probe

N = **Number** of **probes**

k_{system} = spring constant of prober, headplate, cardholder, chuck and probe card

Probe Card Mechanics

Configuration 1: A traditional probe card supported by cardholder

= lowest probecard stiffness

PCB

Configuration 2: A probe card supported by cardholder and contacts on tester

= high probecard stiffness

PCB

<u>Configuration 3:</u> Probe card supported by cardholder with TSS all the way out to card holder edge = medium - high probecard stiffness

PCB

June 10 - 13, 2012

IEEE Workshop

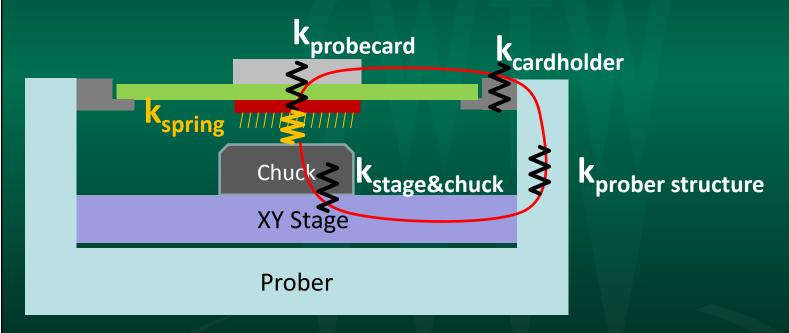
Combining Springs

- 1. <u>Most springs are linear and obeys Hooke's law:</u> F=k*δ. Increase the force and the distance changes linearly with the force. k is the linear spring constant. It has units of Force/Distance, e.g. grams/um or grams/mil
- 2. <u>Springs in parallel</u> add together. 10 identical springs in parallel act the same as one spring with a k value 10 times larger. (This is the same way to add capacitors in parallel) *Note: the spring is the mechanical analog of a electrical capacitor*

$$k_{\text{equivalent}} = k_1 + k_2$$

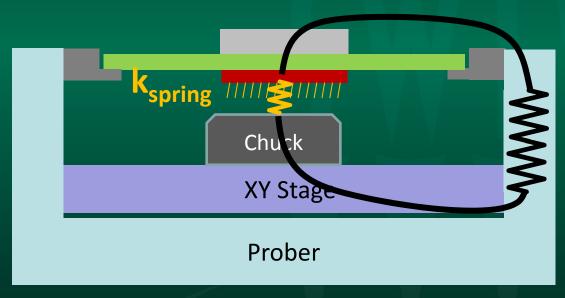
3. <u>Springs in series</u> add as the reciprocal of the spring constants. 10 identical springs in series act the same as one spring with a k value equal to 1/10th the original. (This is the same way to add electrical capacitors in series)

$$\frac{1}{k_1} + \frac{1}{k_2}$$


$$\frac{1}{k_{\text{equivalent}}} = \frac{1}{k_1} + \frac{1}{k_2}$$

June 10 - 13, 2012

IEEE Workshop


Let's analyze a probe card as a system of springs in parallel and in series

We have a group of springs in series that make up the system:

$$\frac{1}{k_{\text{system}}} = \frac{1}{k_{\text{probecard}}} + \frac{1}{k_{\text{cardholder}}} + \frac{1}{k_{\text{prober structure}}} + \frac{1}{k_{\text{stage\&chuck}}}$$

Let's analyze a probe card as a system of springs in parallel and in series

K_{system}

All the springs on the probe head are in parallel with one another:

Ksystem

All the springs on the probe head are in series with the system:

June 10 - 13, 2012

IEEE Workshop

Let's analyze a probe card as a system of springs in parallel and in series

We have multiple springs in series that make up the system:

$$\frac{1}{k_{\text{system}}} = \frac{1}{k_{\text{probecard}}} + \frac{1}{k_{\text{cardholder}}} + \frac{1}{k_{\text{prober structure}}} + \frac{1}{k_{\text{stage\&chuck}}}$$

We have multiple springs in parallel (all the probes together):

$$k1 + k2 + k3 ... = N * k_{spring}$$

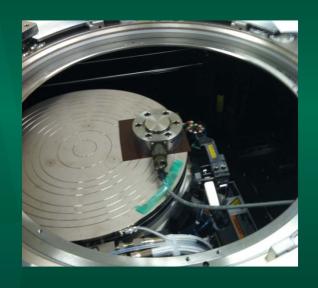
Putting it all together (system and probe springs are in series):

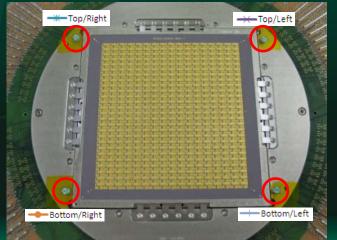
$$\frac{1}{k_{total}} = \frac{1}{k_{system}} + \frac{1}{N*k_{spring}}$$

Deriving the AOT/POT formula

$$F_{\text{springs}} = (N * k_{\text{spring}}) * \delta_{\text{spring}}$$

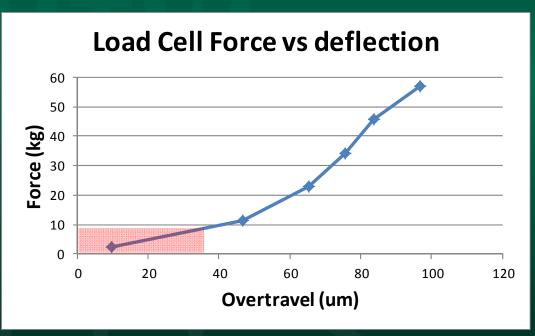
$$F_{total} = k_{total} * \delta_{total}$$


$$\frac{\text{AOT}}{\text{POT}} = \frac{\delta_{\text{spring}}}{\delta_{\text{total}}} = \frac{F_{\text{spring}} / (N * k_{\text{spring}})}{F_{\text{total}} / k_{\text{total}}}$$

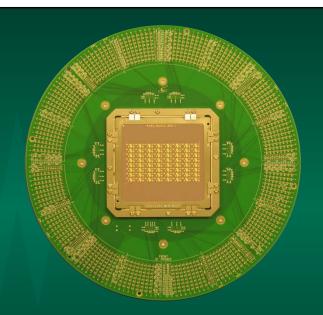

Force on springs is the same as force on total – so these cancel.

Measurement Methods

• 3 measurements methods:


- To find k_{system}: use a load cell on the chuck and a probecard with no probe springs.
- To find k_{spring}: use a FFI kmapper a small force/displacement machine could also use CETR tribometer or other micro force/displacement measurement machines
- To find k_{total}: use clay puck technique on a full probecard in the prober

Measuring our load cell deflection

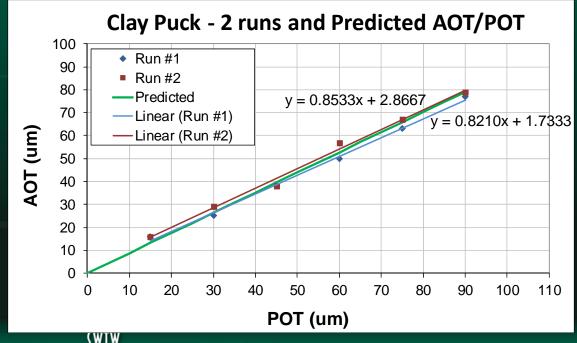


- Our first test and the data in the electronic version of the presentation (on USB) used an average k value for the load cell from 0-50kg where $\mathbf{k}_{loadcell} = 740 \text{ g/um}$
- But our two test probe cards were both relatively low pin count and so in that range the $k_{loadcell}$ = 244 g/um

Test #1

64 site card

- 3072 springs
- Average $k_{spring} = 0.96 \text{ g/mil}$
- $-N*k_{spring} = 116.1 g/um$

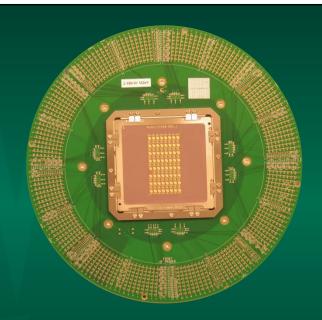


Clay puck

-AOT/POT = 84%(Average of 2 runs)

Calculated

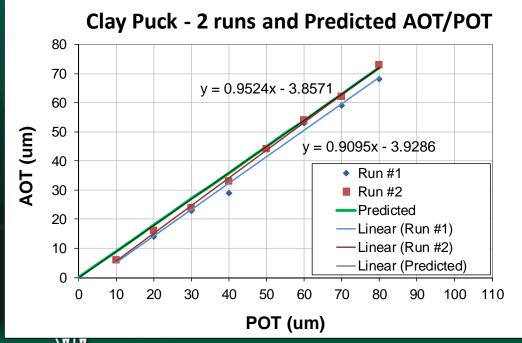
– AOT/POT = 87% (from kmapper and load cell measurements)



Test #2

64 site card

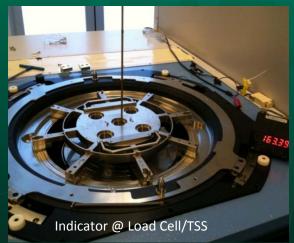
- 2560 springs
- Average $k_{spring} = 0.91 \text{ g/mil}$
- $-N*k_{spring} = 116.1 g/um$

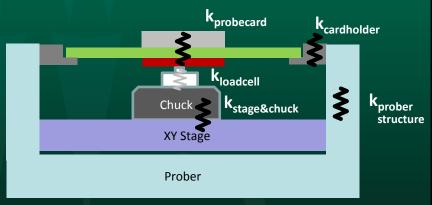


Clay puck

– AOT/POT = 93% (Average of 2 runs)

Calculated

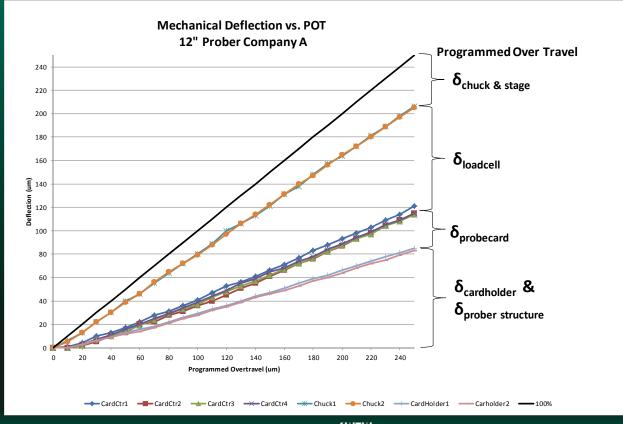

– AOT/POT = 90% (from kmapper and load cell measurements)



Understanding k_{system}

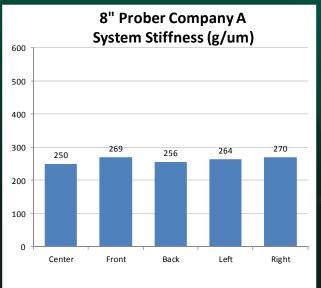
Use indicators to measure deflections and understand contribution of each of the major components with load cell inserted in place of springs.

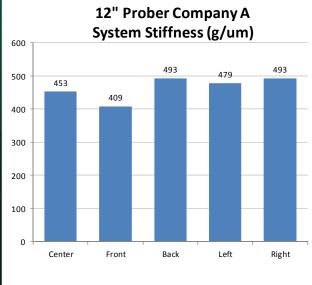
ne 10 - 13, 2012

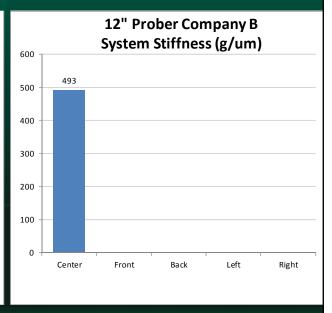

Calculating Actual Chuck Force

This means that regardless of the AOT/POT ratio – the force on the chuck is determined ONLY by the k of the springs, the number of springs and the desired overtravel (AOT) of the springs.

Having a weak system (same as a low AOT/POT ratio) – theoretically does not impact spring performance – but practically speaking – it causes greater variation in AOT and variation across the wafer


Variations in the system


 Cardholder and load cell are the lowest k (weakest) elements in the measurement. Because load cell is the measurement device – it is not in the real system but must be subtracted out. Quantifying the load cell deflection is the biggest source of error in these measurements.



Variations on the floor

• The prober headplate & cardholder is the most significant portion of the k system. Data collected shows variation depending on the position on the chuck. So AOT/POT ratio varies as the wafer is probed – this may explain some variation in CRES or other measured values across the wafer.

Summary

- The actual overtravel you get on an array of probe springs is not the same as the value you enter on the prober.
 - We call this ratio AOT/POT = Actual Overtravel divided by Programmed Overtravel.
 - For small pin counts (100 1K) this does not matter very much as the ratio is typically >95%
 - For high pin counts (2K to >10K) this matters quite a bit and should be characterized and understood when setting up new probe cards
- Mechanical springs add in parallel and series the same way you add electrical capacitors.
 - Regardless of the ratio and how much the system and probe card deflects, the total force required by the prober to compress probes to a desired overtravel is the same. That is – if the AOT/POT ratio is 30% or 95% and you want to compress 5000 springs to 60um AOT, the chuck force will be the same.
 - Using load cells, measured k values and clay puck together will help you characterize your setup.
 - Once your system stiffness is known future cards that use the same architecture can safely be used with a calculated AOT/POT ratio
- Other factors beyond AOT/POT ratio can affect probe card performance such as local stiffness of the probe card and position on the prober chuck that may be important for your setup.

Future Work

- Make measurements from Center, Left, Right, Front & Back to verify that your prober chuck will have the same AOT for all your touchdowns on the wafer.
- POT could be changed with every TD in an extreme situation
 - 100,000 springs
 - Chuck force = 300Kg
 - Software would have to be written to do this
- Use this information when specifying your prober.
- AOT/POT can not be ignored for high spring counts.

Acknowledgements

FormFactor

- Randy Lee
- Doug Ondricek
- Randy Parks
- Clarence Gapay

• Freescale

- Doug Garrett
- George Alba