

IEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 9 - 12, 2013 | San Diego, California

When Brick Wall is not the best, PART II (A Touch Down Optimization Study)

Tommie Berry

FormFactor

Overview Touch Down Optimization(TDO)

- Examples show why site layout is not obvious
- Choosing the site count and probe head layout
- Solid Array (Brick-Wall) is not always better
- Crosstalk issues
- Power (di/dt) noise issues
- Multi-Layer-Ceramic (MLC) routing issues
- Sharing tester resources to increase parallelism

TDO Comparison Study

- Test Cell Time (\$) for 1 wafer depends on
 - Test Time for each TD
 - Average Prober Move Time
 - Touchdown Count Per Wafer
- Optimize the following
 - Parallelism & Probe Head Arrangement
 - What is the best stepping pattern
 - Minimize TD Counts
 - Minimize Prober Total Stepping Distance
- We will look at 3 designs as examples

Design #1, 4 DUTS

200mm wafer
3.5mm edge keepout
6x6mm die step
749 die per wafer

4% Improvement Opportunity

Design #1, 8 DUTS

200mm wafer
3.5mm edge keepout
6x6mm die step
749 die per wafer

104 TDs
Efficiency 90%

Probe Head Configuration

TD Pattern

105 TDs 89.0%

202 TDs

106 TDs 88%

113 TDs 83%

7% Improvement Opportunity

Design #2, 4 DUTS

200mm wafer
3.5mm edge keepout
6x6mm die step
1085 die per wafer

Efficiency -

Probe Head Configuration

TD Pattern 288 TDs 94%

290 TDs 93.5%

291 TDs 93%

291 TDs 93%

292 TDs 92.9%

1% Improvement Opportunity

Design #2, 8 DUTS

200mm wafer
3.5mm edge keepout
6x6mm die step
1085 die per wafer

Design #3, 4 DUTS

200mm wafer3.5mm edge keepout6x6mm die step1240 die per wafer

June 9 - 12, 2013 IEEE Workshop

3% Improvement Opportunity

Design #3, 8 DUTS

200mm wafer
3.5mm edge keepout
6x6mm die step
1240 die per wafer

TDO Summary

Design #1, 749 DPW x4 93.6% 93% 92.7% 92% 90% **Design #1, 749 DPW x8** 83% 89.0% 88% Design #2, 1085 DPW x4 93% 92.9% 94% 93.5% 93% Design #2, 1085 DPW x8 90.4% 89.8% 87.5% 83.7% 90.4% Design #3, 1240 DPW x4 96.9% 95.7% 95.1% 93.7% 96.9% Design #3, 1240 DPW x8

93.4%

91.1%

90.6%

84%

New TDO tool on 13 TI Designs

				Percent Effeciency Improvement by					
Original TI Data				using the new TDO tool					
	NUM								TD Count
Device TWSETUP	SITES	DIE per wafer		Solid	SR	SC	SRSC	Matrix	improvement
#1	2	395		2.8%	2.8%	4.2%	1.4%	-10.0%	4.3%
#2	2	800		3.0%	2.3%	3.0%	2.1%	-15.2%	3.1%
#3	2	1077		3.4%	1.0%	3.4%	1.0%	-13.8%	3.4%
#4	4	818		1.3%	1.3%	0.0%	-1.7%	-14.4%	1.4%
#5	4	846		4.7%	4.3%	3.4%	-0.1%	-12.9%	4.4%
#6	4	2350		1.4%	-0.2%	0.8%	-1.1%	-18.1%	1.5%
#7	8	975		3.4%	1.3%	2.0%	-4.9%	-13.7%	3.6%
#8	8	1566		1.3%	-0.4%	0.4%	-2.5%	-13.8%	1.4%
#9	8	5353		9.0%	8.3%	8.5%	6.0%	5.6%	9.3%
#10	16	3358		13.8%	11.5%	12.7%	9.2%	1.3%	5.8%
#11	16	5252		1.9%	0.8%	0.0%	-2.1%	-12.8%	2.0%
#12	32	930		6.6%	4.2%	4.2%	-3.8%	6.6%	7.9%
#13	32	1065		9.7%	0.0%	0.0%	-6.3%	7.6%	11.4%
Average New TDO Tool Improvements in Efficency>			>	4.8%	2.9%	3.3%	-0.2%	-8.0%	4.6%

Crosstalk issues

- Routing out from a 0.5mm or 0.8mm Ball Grid Array is a huge challenge for just one DUT.
- Solid Brick for even 2x2 arrays can double the ceramic and PCB layer counts.
- Routing very fine pitch lines through a brick wall will not allow the layout to use best practice cross talk routing rules.

Power (di/dt) noise issues

- Achieving low Mutual Loop Inductance on high di/dt supplies can be impossible without skip row, skip column or a matrix design.
- Skipping allows bigger planes with less holes.
- Also leaves more room for highly needed caps.
- Brick-Wall is not always the best solution.

Routing Issues

- Getting traces out from the center of a large BGA can be impossible with solid arrays.
- Power Plane Routing is much better with skip row/skip column
- Layer count is limited on MLC depending on many factors but using a solid array for probe cards instead of skip can drive the required layer count out of reach.
- High layer count MLC is very expensive.

Sharing tester resources To Increase Parallelism

- Many customers are adding circuits to increase parallelism
- Tester Resource Enhancement (TRE) can be:
 - Simple Shared Drivers
 - Resistor Protected Shared Drivers
 - Simple Shared Power Supplies
 - Relay Shared Power Supplies
- All these options require room for circuits
- With Solid Arrays, this is very limited.

Conclusions

- FormFactor has new advanced TDO (Touch Down Optimization) software that can be used on new designs to find the lowest TD for a given wafer pattern
- In many cases, a "special" pattern can do better than brick wall or simple rectangular or diagonal patterns
- Diagonal patterns as they get larger (esp for x8 and >x8) will generally not do as well as more compact layout patterns
- There is no general rule for which pattern will be the best e.g. the statement that brickwall is always the best is not correct. For the lowest # of TDs per wafer an analysis should be done on each new wafer pattern and each parallelism.
- Crosstalk, di/dt Power Issues, layer counts and routing often force skip anyway. This tool allows you have the best of all worlds.

