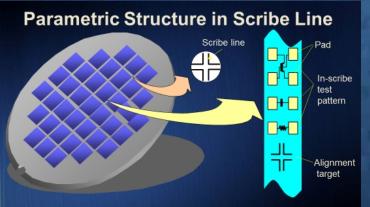


2D MEMS Probe to Parametric Testing and Other Probe Technology

Takao Saeki Formfactor

Hsinchu, Taiwan, October 17-18, 2019


Overview

- Introduction
- History of Parametric Probe Card
- Objective
- 2D MEMS Probe to Parametric Test
- Customer Evaluation Results
- Probe Technology Comparison for Parametric Testing
- Summary

Introduction

 Parametric Testing(WAT; Wafer Acceptance Test) is unique application for probe card suppliers

- Basically similar and simple probe layout 1 or 2 lines, 10 100 probes
- NO device type specific test DRAM, NAND, SoC, Logic, CIS
- Each semiconductor company has each special requirement
- Circuit, Test condition, Pad size, material and treatment, Sample size and etc
- Many different Probe technologies are available by each probe card supplier
- Formfactor also providing many probe technology
- Added 1 more probe technology to Parametric card 2D-MEMS, T18

History of Parametric Probe Card

2005

2010

- Cantilever Needle
 - 3D MEMS(Takumi T3, T11)
 - Pyramid Membrane

2000

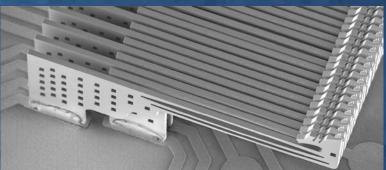
- Vertical MEMS

- 2D MEMS – Takumi-CL

2015

2020

Objective


- Introducing T18, 2D-MEM Cantilever type spring under evaluation by A Semiconductor company.
- Evaluation is showing some difference from 3D-MEMS type probe

 Hopefully this presentation will be one of guidance for probe technology choice for Semiconductor company

T18, 2D-MEMS Probe to Parametric

Formfactor T18, 2D-MEMS Cantilever type spring was originally developed for NAND Flash probe card

- Take advantage from Cantilever type and Vertical type
- Low Scrub Ratio; 4% OD with saturating
- Less Particle generation
- Excess Over Travel capability; 250um Max OD

• Potentially good for Parametric Probe Card !?

- Low Scrub Ratio \rightarrow Stay in Small pad(<30um) with ease of use
- Less Particle generation \rightarrow Good for everybody
- Excess OD capability \rightarrow Absorb thermal Z movement with ease of use

2D-MEMS and 3D-MEMS Difference

2D and 3D Comparison for some important factors

T18, 2D-MEMS	ltem	T11.2, 3D-MEMS	
Square Pole (10x10x >20um)	Probe Tip Shape/Size	Truncated Pyramid (6x6 ~ 25x25um)	
+/-5um	Tip Placement Accuracy	+/-5um	
Fixed - 35-50um	Spring Body - Width	Tapered – <u>More Robust</u>	
PA-II	Tip Material	PA-II	
4% Saturating - Smaller	Scrub Ratio	10% Linear	
250um - <u>Larger</u>	Maximum Over Travel	150um	

T18, 2D-MEMS Probe Tip

Side View -T18, 2D

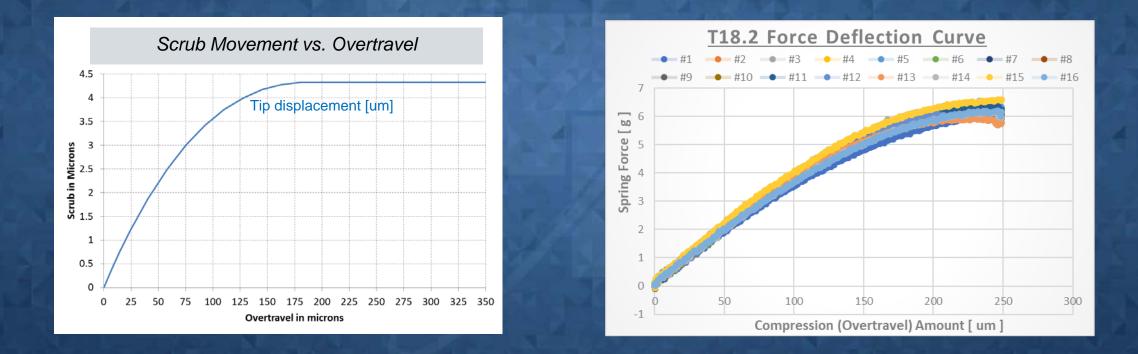
• 2D-MEMS Tip Shape maintains same tip size for life

- Polishing probe tips by Abrasive cleaning will not change the tip X&Y size

Angl	ed '	<u>View</u>
- T18	3, 2	D

• T11, 3D-MEMS Pyramid Shape

- 6x6um tip size increases by tip wear and abrasive cleaning
- Scrub mark size also increases
- # Recent ITS Waffle cleaning maintains tip size small


by aggressive cleaning and rounding tip

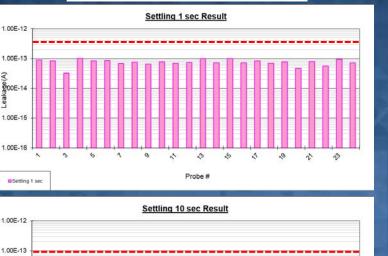
Author

T18, 2D-MEMS Scrub Ratio and Force

- Scrub Ratio; ~4% with decreasing at high OD
- Spring constant(K-value); 0.6 0.8[g/mil] decreasing at high OD

T18, 2D-MEMS, T11 - Takumi 2D-MEMS, T18 - Takumi-CL

Experimental Procedure

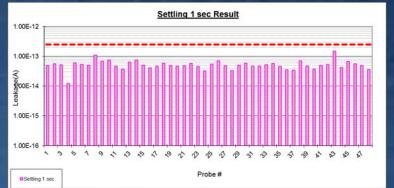

<u>Tester; Agilent 4156C</u> <u>Measured voltage: 10V (100V)</u> <u>Temperature: 23+/-5C</u> <u>Humidity: 50+/-10%</u> <u>Measurement pin count: 48 ch</u> <u>Measurement setting time: 1sec, 10sec</u>

200E-14

1.00E-1

1.00E-1

Settling 10 sec


3

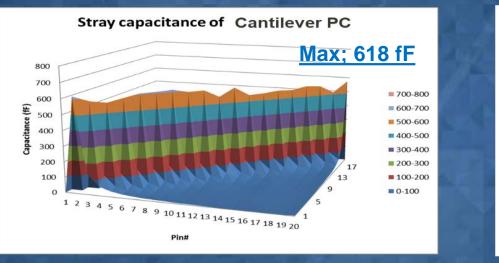
Probe #

<u><250fA</u> @ 1 sec settling

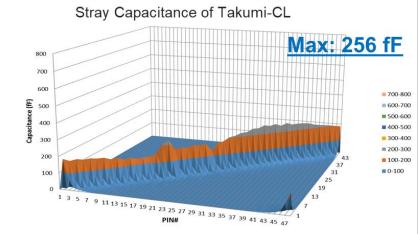
<100fA

@ 10 sec settling

 2D-MEMS & 3D-MEMS probe card both showed equivalent low electrical leakage performance


 MEMS type leakage performance rely on substrate and PCB, which requires experienced design and material selection 2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

T18, 2D-MEMS – Low Parasitic(Stray) Capacitance

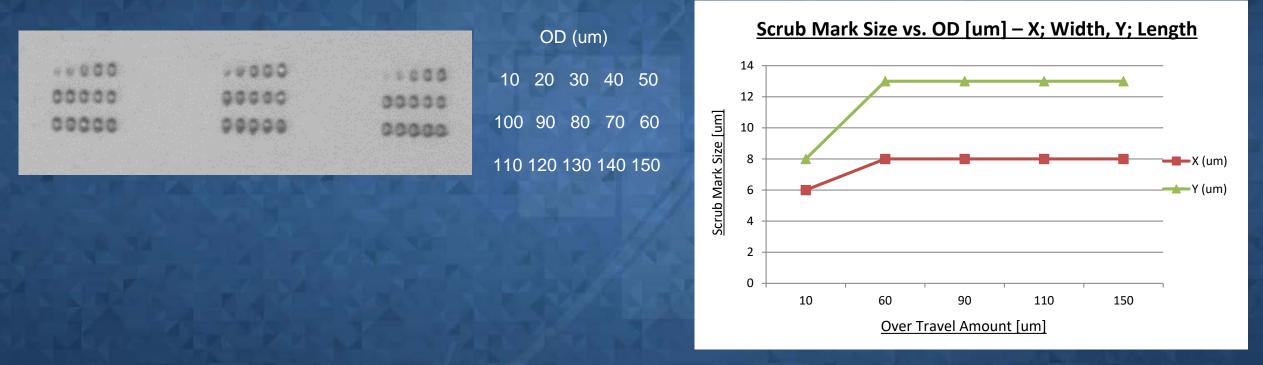

Typical Cantilever Probe Card

<u>Tester; Agilent E4980A</u> <u>Measured voltage: 1V</u> <u>Measurement frequency: 1MHz</u> <u>Temperature: 23+/-5C</u> <u>Humidity: 50+/-10%</u> <u>Measurement pin count: 48 ch</u>

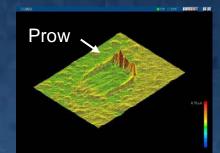
2D-MEMS, T18 Takumi-CL

- 2D-MEMS probe card showed low stray capacitance equivalent with 3D-MEMS type
- Careful Substrate design and material selection are important to utilize MEMS stable mechanical performance and realize consistent electrical performance.
 Author
 2nd Annual SWTest Asia | Taiwan, October 17-18, 2019

Customer Evaluation Results

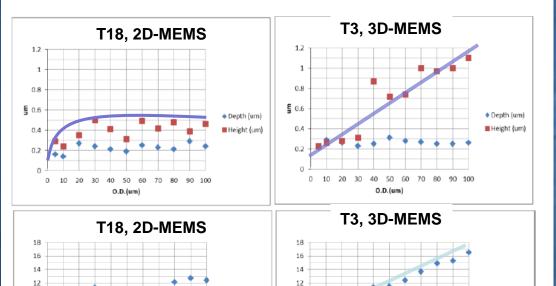

- A semiconductor company has been evaluating T18 probe card with actual wafers
- Important to evaluate the actual Scrub mark size and Electrical Contact performance with actual wafer, which varies with pad metallization condition

Customer Evaluation Results


 Scrub Mark Size, T18, 2D-MEMS

 Scrub Mark Size saturated on actual customer wafer also

 Saturated Scrub Mark Size; 8 x 13um (NSxS direction)



Customer Evaluation Results
– Scrub Mark – Depth & Prow Height
Customer Special Requirement: Prow Height

Needle mark

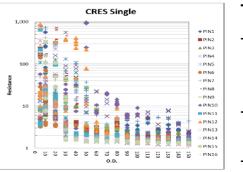
O.D.(um)

Length (um)

Due to following process, Prow height limitation required

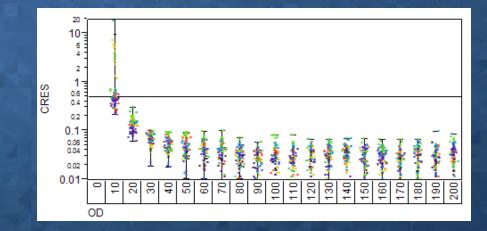
- T3 type 3D-MEMS showing proportional increase
- T18 type, 2D-MEMS showing saturated prow height and passed customer criteria

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019


Length (um)

Customer Evaluation Results – CRES vs. OD Performance • Production Overtravel amount was set with 100um with margin

• Evaluation continues


Customer Data

CRES

Takumi-A option3 O.D. spited C-res data.

- Stable C-res looks stable above 90um O.D. in this evaluation.
- We choice 100um O.D. temporary standard.
- Spring force will increase 2.2g to 3.8g (about 40%)

CRES[Ohms] vs. OD[um] FFI Internal Measurement

CRES[Ohms] vs. OD[um] Stable after 90um Overtravel CRES + Path Registance

Author

Customer Evaluation Results Electrical Data Correlation #1 Data Correlation between Cantilever card and T18 card performed with +/-2.5% difference specification on 110 items

						_								_		_				
Parameter Name			Sameness1	Summary																
Example A	Link to SFC	Green	94	94																
Example B		Yellow	8	8																
Example C		Red	8	8																
Example 0																				
				Split Std 🛛 👻	Sameness	* * *														
STP_VILS	-0.7	0.01	-0.7	0.01	100.03		0.0%	Box Plot							Box Plot					
X12N_VTL	0.57	0.01	0.57	0.01	100.03		0.0%						Data table:		6				Data table:	
X20P_VTL	-0.65	0.01	-0.65	0.01	100.03		0.0%	ose 2480					Data Table (3) 💌		-				Data Table (3)) 🕶
X28N_VTL	0.59	0.01	0.59	0.01	100.03		0.0%	2470	_				Color by:						Color by:	
X30F_VTL	-0.55	0.01	-0.55	0.01	100.03		0.0%	+ 2460					CAT * + *		1				CAT + + *	•
K33N_VTL	1.51	0.01	1.51	0.01	100.03		0.0%	2450					LOT_9116014		+ 3		_		LOT_91160	14 -
X40P_VTL	-0.55	0.01	-0.55	0.01	100.03		0.0%	× 2440					TAKUMI-A		2				TAKUMI-A	
JZEN_BV	6.34	0.01	6.34	0.01	100.03		0.0%	2430					WAS		LCW 1				WAS	
RS_NBL	49.92	1.72					0.9%		LOT_9116014 2470.1	2463.33			Reference points:		8	LOT_9116014	TAKUMI-A	WAS	Reference point	
NV_BVB\$S	-21.95	0.16		0.12			0.0%	StdDev	9.80306	2463.33	(Em		Average		S Avg StdDev	2.94222 0.0533849	2.93511 0.0952562	3.4 3.67696	Average	
RS_M23RP	92.55	1.97	93.25	1.76			1 0.8%	Count	10	18		0	Median		Count	18	18	2	Median	
RS_PIHSR	304.83	0.62		0.57	100.17		0.0%	Median	2470	2454.5	(Em	pty)			Median	2.938	2.963	3.4	megnari	
S3P_BVDW	-8.1	0.11	-8.12		100.18		# 0.2%		CA	T * + *						CAT	* + *			
STRABVDS	-13.1	0.11	-13.12		100.18		# 0.2%													
M2K_M3T	2.72	0.17	2.67	0.15	100.18	% #	# 1.9%	RS_PTANK	vs. Site				-		V2C_M3T	s. Site				
EP_IDE1	39.08	1.33		1.21	100.19	176 d	# 0.5%		6				Data table:		6	0			Data table:	
S3NIBIDS -	20.78	0.24		0.19			# 0.6%	2480	• •				Data Table (3) +						Data Table (3)) 🕶 🔄
CC_PMOAT	10.44	0.45		0.39			0.9%	2470		•			Marker by:		+ 5				Marker by:	
NV_HFE_M	61.91	1.81	61.61	1.58			# 0.5%	+ 2460		• •			(Row Num + +		+ 4				(Row Num	* + *
NV_EVEBO	17.15	0.07	17.1	0.05			# 0.3%				• •		Color by:						Color by:	
NY_BVGEO	10.28	0.16					0 0.2%	2460			•	•	CAT - + -		3	6 0 0	•••	- P • •	CAT + + •	•
STRAICNS	-238.05	1.79		1.42			1 0.3%	2440				•	LOT_9116014		2 2				LOT_91160	14 -
NV_BVECS	17.13	0.06					# 0.1%	원 2430		•		•	TAKUMI-A		XX .				TAKUMI-A	
GC_NWOAT	10.49	0.29		0.24			# 0.2%		-				WAS		1	0			WAS	
VIK NOM	4.08	0.16		0.13			0 0.5%		2	4	0	0	Shape by:			2	4 6	8	Shape by:	
X20N_ION	338.85	0.91	339.46	0.6			1 0.2%			Site +			(None) +			5	ite +		(None) +	
PS_HFE_M	21.08	0.52		0.41	100.29		# 0.2%													
X28N_ION	262.36	5.83	262.25	4.37	100.29	% <u></u> #	# 0.0%	10000					-							

Customer Evaluation Results

 Electrical Data Correlation #2

 16/110 items showed >2.5% spec. And customer confirmed all of 16 items are caused by other testing root causes.
 And passed the correlation test.

Takumi-A electrical part update

Result

-Compared the CRES between released cards. Slightly shift between Cantilever and Takumi/Takumi-A. The cause is as a shift from the difference in contact area. Cantilever : $0.26 \sim 0.28 \Omega$ Takumi : $1.03 \sim 1.30 \Omega$ Takumi : $1.03 \sim 1.30 \Omega$

-Compared the sameness by totally 110 items.(*WAS only) Did not found abnormal matter by Card issue. @R/Y color.

Green

"CRES" this case means "(CRES)+(Path Resistance)x2Ch value
 2nd Annual SWTest Asia | Taiwan, October 17-18, 2019
 17

Parametric Probe Card Comparison

		Cantilever Needle	3D MEMS - T11	Pyramid Memblene	Vertical MEMS	2D-MEMS, T18	
	Pad Pitch	>50um	>50um	>50um	>74um	>70um	
S	Layout Capability - 2 Row	40um	60um	60um	74um	70um	
teristi	Probe Tip Size	10x10	4x4	8x8um	10x10um	10x10um	
Jarad	Tip size growth by tip wear	Yes	Yes	Yes	No	No	
ical Cl	Probe Tip Placement Accuracy - X & Y	+/-5um	+/-5um	+/-5um	+/8.5um	+/-5um	
Mechanical Characteristics	Scrub Ratio (% to OD)	Long	Midium	Short	Short	Short	
Ř	Accuracy durability	+/-10um	+/-5um	+/-5um	+/-8.5um	+/-5um	
	Pad Size - Production level	>50x50um	>25x25um	>30x30um	>30x30um	>30x30um	
al stics	Leakage Performance	Moderate - Low	Low	Moderate	Moderate	Low	
Electrical Characteristics	Path Resistance	Low	Midium	Middium	Midium	Midium	
El Char	Contact Stability	Moderate	High	High	Moderate	High	
Special Require ment	RF	Moderate	Moderate	-3dB@40GHz	Moderate	Moderate	
Spe Req me	Bump wafer parametric	Capable	Height Limit	NA	Capable	Height Limit	
	Life Time	Moderte	Long	Moderate	Moderate	Moderate	
E	Probe Insert Replaceable	Some	Yes	Yes	Yes	Option	
Utilization	Unit Cost	Low	Moderate	Moderate	Moderate	Moderate	
£	NRE Cost	None	Moderate	Moderate	Moderate	Moderate	
	New desgin Lead Time	Short	Moderate	Moderate	Moderate	Moderate	

Each Probe Technology has each strength and weakness

Consideration and Next Step

- T18, 2D-MEMS evaluation with A Customer showed a special benefit, Low prow height
- Continuing customer qualification to optimize the utilization and look for other benefits for customer satisfaction
- Depends on priority, one of characteristics will fit on all Semiconductor company.
- Will accumulate the experience to find out the fastest way