

5G mmWave: Enabling Higher Parallelism Wafer Test

Daniel Bock, Ph.D.

Brandon Liew

FormFactor, Inc.

Introduction

- 5G mmWave systems are no longer in the future. 5G is actively being deployed, with more cell phones with integrated the mmWave radios.
 - 5G mmWave chips have moved out of engineering/development labs and into mass production, and therefore need to meet the ramp demands of the market
 - This change also means a required reduction in cost of test which is a large part of what is driving parallelism increases
- FormFactor will go over our solutions to meet the demanding requirements for 5G

Agenda

- Discussion of 5G deployment
- Probe Head Technology Parallelism Expansion
- Test Cells
 - ATE Resource limitations
 - How to Expand Parallelism
- Summary

What is the 5G mmWave?

- The 5G mmWave is the radio inside of the cellphone that operates at bands greater than 6 GHz, with ultra-fast data speeds
 - The mmWave chips are using more RF channels with multiple patch antennas in order to maximize performance when compared to 4G systems

Fig. 5 5G FDD beamforming module architecture. Source: arXiv:1704.02540v3 [cs.IT].

Status of 5G mmWave Deployment

- 5G is rolling out today in increasing speed and volume
- This deployment is leading to a ramp in the number of chips being tested

mmWave rollout is happening now

- 186 operators in 48 countries/territories have been investing in 5G mmWave (testing, trialling, planning, acquiring licences, deploying, or operating networks)
 - 26/28 GHz
 - 37-40 GHz
 - 47-48 GHz
- 134 operators in 23 countries/territories hold licences enabling mmWave deployment in one of 26/28 GHz, 37-40 GHz and 47-48 GHz
- 28 operators in 16 countries identified as actively deploying mmWave spectrum for 5G

Use of 5G spectrum between 24.25 GHz and 29.5 GHz

© DSAT Editor, DSAT for MSFT, GeoNames, Microsoft, Navinfo, TomTom, Wikipedia

Growth in 5G

- With the 5G mmWave network deployment, there is rapid growth in the number of phones providing mmWave capability
- Since each phone requires about 3 AiP chips, it is estimated that by 2026, more than 750M 5G mmWave chips will need to be tested per year

Ref: Cellular RF Front-End Technologies for Mobile Handsets 2021. Market and Technology Report 2021, Yole Development

Smartphone volume (Munits)

Model of Volume – How many test cells vs Parallelism to meet Ramp?

- Using current market forecasts, the cost of test depends highly on the parallelism
- The table below shows that as the parallelism increases, the cost savings in the reduction in the number of test cells is substantial, up to \$500M in 2025 for the semiconductor manufacturers

# of 5G Test Cells Needed									
Parallelism	x1	x2		x4		x8			
Year	#	#	Est. Savings (\$M)	#	Est. Savings (\$M)	#	Est. Savings (\$M)		
2020	83	41	\$41	21	\$62	10	\$72		
2021	306	153	\$153	77	\$229	38	\$268		
2022	402	201	\$201	101	\$301	50	\$351		
2023	489	245	\$244	123	\$367	61	\$428		
2024	580	290	\$290	145	\$434	73	\$507		
2025	642	322	\$321	161	\$482	81	\$562		

Parallelism effect on Number of test cells. For estimates, 1 test cell costs about \$1M

How Many RF Channels are needed for 5G FR2?

- Each mmWave chip for 5G requires a large number of RF channels due to the phased array design
- For example, in TechInsights¹, an X-ray analysis of the QTM052 and show that it has a total of 24 RF ports, 8 in each quadrant
- Therefore, in x8 testing, one would need 192 **RF** ports

QTM052 from TechInsights

¹https://www.techinsights.com/webinars/webinar-space-power-beams-shorten-trek-gain-edge-5g-chip-designand-manufacturing

- In order to provide the wafer test solution for high parallelism, the test cell needs to:
 - □ Wafer Contactor capable to operate > 55 GHz
 - Accommodate large RF test heads to support the mmWave frequencies
 - □ Have enough mmWave tester channels (~192) to cover the RF ports required
 - □ Provide sufficient space on the board for components/connectors.

Comparison of 4 Primary Probe Head Technologies

	Cantilever	Vertical MEMS	Spring Pin	Mem
RF Performance	< 3 GHz	< 40 GHz	< 55 GHz	> 80
Array Capable?	No	Yes	Yes	Ye
Pitch	40 µm, peripheral	90 µm	>150 μm	100
Max Size	90x20mm	100 x 100mm	90x20 mm	10x80
Power Integrity				
(bypass cap distance				
from tip)	5mm	5mm	10mm	3m

brane GHz es µm 0 mm

nm

Pyramid Probe Family of Wafer Probe

- Pyramid Probe has proven RF performance out to 80 GHz
 - Maintains the better than -10 dB RL out to
 > 80 GHz with good margin
 - Better than 6 dB IL out to 80 GHz

- In order to provide the wafer test solution for high parallelism, the test cell needs to:
 - ✓ Wafer Contactor capable to operate > 55 GHz
 - Accommodate large RF test heads to support the mmWave frequencies
 - □ Have enough mmWave tester channels (~192) to cover the RF ports required
 - □ Provide sufficient space on the board for components/connectors.

Pyramid Probe Area Expansion

- Expand active probing area using traditional membrane probe tips
 - P2000 supports a **4x AiP** in a linear array today
 - P4000 will support an 8x AiP in 2022
- Pyramid membrane performance carries forward: P80
 - Excellent RF measurements
 - Stable CRES with consistent probe marks
 - Replaceable cores from tester side

P4000

P2000

2021

Enabling Higher Density with FFI Thin Film Technology

- Dense die breakout and routing with higher number of I/O
 - Cross of RF lines with ground in-between
 - Larger power nets
 - World-class impedance control (+/- 80 mrho over entire signal path)
 - Impedances other than 50 Ω available within the same probe head possible.

- In order to provide the wafer test solution for high parallelism, the test cell needs to:
 - ✓ Wafer Contactor capable to operate >55GHz
 - Accommodate large RF test heads to support the mmWave frequencies
 - □ Have enough mmW tester channels (~192) to cover the RF ports required
 - □ Provide sufficient space on the board for components/connectors.

ATE Comparison Table – x8 Parallelism Challenge

- In order to meet the channel count, the testers from the major wafer test manufacturers have increased their mmWave capability
 - However, the complexity in mmWave test channels has limited the maximum number of channels in an ATE possible

	RF Bandwidth	Max Channel Count
Teradyne UltraFlex ²	44 GHz	128 ¹
Advantest WaveScale ²	70 GHz	64
NI STS ²	44 GHz	~50

¹ The max is 128 (https://www.teradyne.com/products/mmwave/)

² The information here is based on the associated datasheets/documentation on each manufacturer's website (Nov 1, 2021)

How to Increase Parallelism Outside of the Tester?

- There are multiple ways to increase the parallelism without increasing the tester channels
 - To maintain RF channel test capability, RF switches can be used
 - By switching serially through the channels, all RF paths on the DUT can still be tested • with minimal test time change (switch speed <1 μ s)
 - Loopback is also possible
 - This allows the device to test itself at high speeds, but it could miss a functional error in some scenarios

RF Switching

- Off the shelf options exist for switching high frequency RF paths.
- Can be used when the test cell is channel-limited or there is insufficient PCB real estate for connectors.

Probe Head Loopback

- FFI can also design custom loopbacks, as well as crossing lines as needed
 - Loopback lengths in the membrane can be ultrashort to minimize return loss and insertion loss
 - The Loopbacks can be crossed with a ground in between for long/complex routing in the large mmWave chips
 - Coupling structures can also be added for attenuation

- In order to provide the wafer test solution for high parallelism, the test cell needs to:
 - ✓ Wafer Contactor capable to operate > 55 GHz
 - Accommodate large RF test heads to support the mmWave frequencies
 - \checkmark Have enough mmWave tester channels (~192) to cover the RF ports required
 - □ Provide sufficient space on the board for components/connectors.

High Density Connectors

- Currently-available high density RF connector solutions cannot meet coax performance.
- Stacked connectors (with semi-rigid coax) in places where sufficient Z height is available
 - Minimizes space used for connectors to get active area back for digital content
 - When height constrained, the PCB can be cut away to allow stacking

- In order to provide the wafer test solution for high parallelism, the test cell needs to:
 - ✓ Wafer Contactor capable to operate > 55 GHz
 - Accommodate large RF test heads to support the mmWave frequencies
 - \checkmark Have enough mmWave tester channels (~192) to cover the RF ports required
 - \checkmark Provide sufficient space on the board for components/connectors.

Summary

- Significant cost savings by going to higher parallelism
- Pyramid product is ready for the parallelism challenge
 - >55 GHz bandwidth;
 - Thin film membrane technology enables high density routing and loopbacks;
 - High RF channel count support with RF switches and compact connectors;
- FormFactor has a complete solution to provide full test capability of AiP chips to support the 5G mmWave ramp.

nectors; y of AiP chips to

