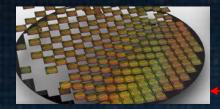
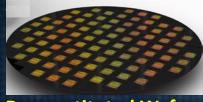


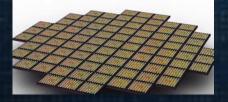
Break the Myth of Wafer Probing On Cu for Fan-out Wafer Level Packaging (FOWLP)

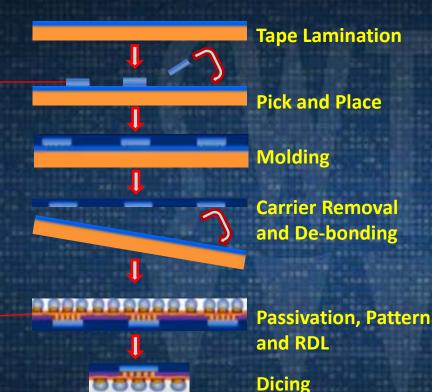


Chang-Hoon Hyun (Samsung Electronics/S.LSI Division) Amy Leong, Ashish Bhardwaj & KH Kim (FormFactor Inc.) June 3-6, 2018


Overview

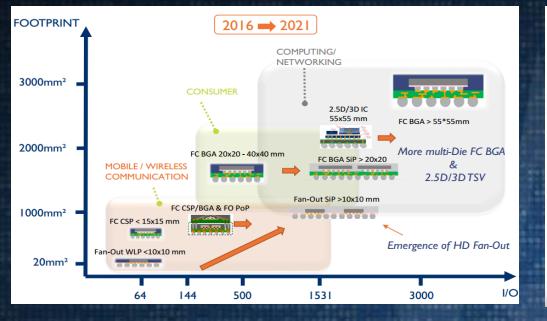
- FOWLP-Basic Definition & Advantages
- Market Trends
- FOWLP Applications
- Cu Pad Probing Challenges
- FFI Solution & Results
- Samsung Test Results
- Summary


Fan-out Wafer Level Packaging (FOWLP) Basic Definition & Advantages



KGD from original device

Re-constituted Wafer

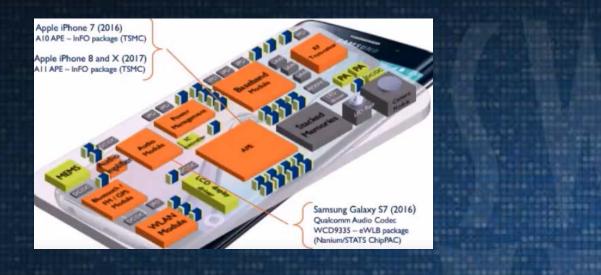

600 x 600 mm Panel	= 6.5x	<u></u>	╆┿╍┿╍┿	╈╌╆╶╅╴┪	┾┿
	+++++	117-	++++++		17
500 x 500 mm Panel	= 4.54x		╬╶┽╸┽╺┼╷ ┝╶┽╸┽╺┼	┝╺┠╺┨╴┥	++
╶┥┥┥┥┥			*****		
	╂╂┠╂		++++	┝╌┝╶┨═┨	
	·+·+·++		<u>++++</u> +		-1-1-
300 x 300 mm Panel		4-4-4-	┿┽╍┽ ╍┿	┝╺┝╴┥─┥	++
/					
300 mm D	ia= 1x		<u></u>		
<mark>─┥─┼─</mark> ┠╌┦╸┽╸┽ ╲┥ <u>╴</u> ┞╶┠╺╶╿╸┤╸┥	·┼·┼·┝-┟-	tt-t-	<u>}</u>	┟╸┟╴┟╴╽	**
		1+	*******		++-
	THE	<u>-i-i-</u> i-	****	+++++	-i-t-

In comparison to 300mm FOWLP, alternative Fan-out Panel Level Packaging (FOPLP) provides larger processing area and lower cost per die

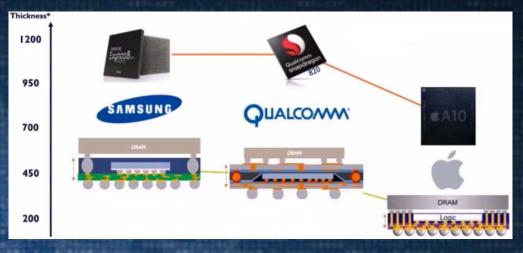

FOWLP Advantages Over Flipchip BGA

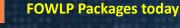
- Smaller Footprint & Thinner Package, no laminated substrate
- Lower thermal resistance
- Simplified Manufacturing Infrastructure
- No bump pitch restriction
- Shorter interconnections for better electrical performance

Apple Adoption of FOWLP Ignites Rapid Growth



• Market has started to grow reaching \$320M in 2016 and forecasted to reach \$2.3B in 2022




4

FAN-OUT Applications

Application Processing Engine Applications

Future FOWLP

Remain on WLCSP or Flip-Chip

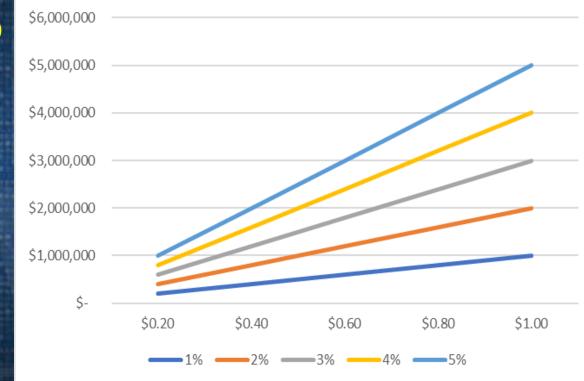
• Next High end

- Data centers
- Radar Applications for automotive
- Artificial Intelligence

data centers, up to 100 Gb

Example of Infineon's Transceiver and Receiver in Basch MRR1 Plus Radar – eWLB packages

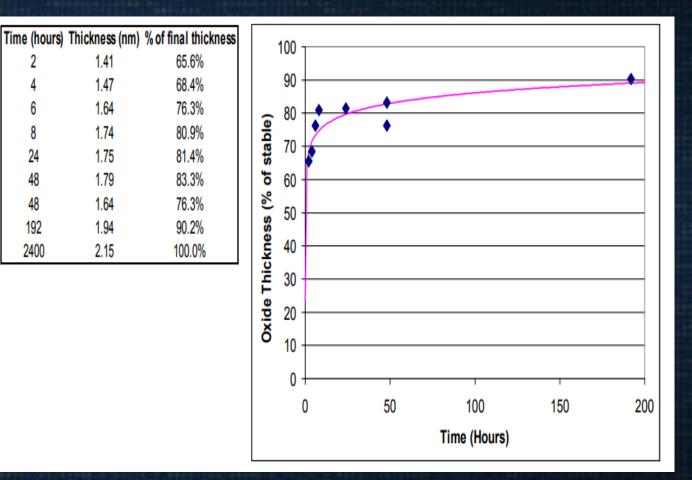
Source: Yole


SW Test Workshop | June 3-6, 2018

5

FOWLP(FOPLP) Impact on Wafer Sort Test

 Known-good-die testing required to minimize the bad die going through subsequent reconstituted wafer
 Test on Cu Pads prior to singulation


Annual Loss (\$USD)

Underkill % at Wafer Sort

Perceived Challenges to Probe Cu Pads

- Oxidation of Cu Pads even at ambient temperature
 - Cupric oxides easily found on the pad surface (faster than aluminum oxide)
- Cu Pad hardness greater than Al pad (Nearly doubled)

Source: Intel

Probe requirements for Cu Pad Probing

- Adequate non-oxidizing probe metallurgy to scrub through oxide layer
 - Avoiding probe sticking on the pad
- Probe geometry and tip shape allowing penetration through oxide layer to have adequate scrub at optimal overtravel
 Stable and low contact resistance through optimized cleaning
- Stable and low contact resistance through optimized cleaning recipe

FFI Solution

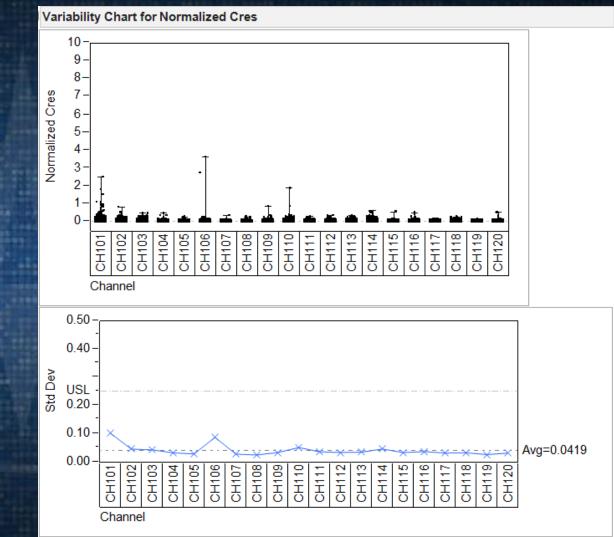
 FFI offers solution to test the known good die (KGD) that are used for Cu-Pad

FFI Solution

Case Study: Samsung Cu-Pad KGD tested using FFI Solution

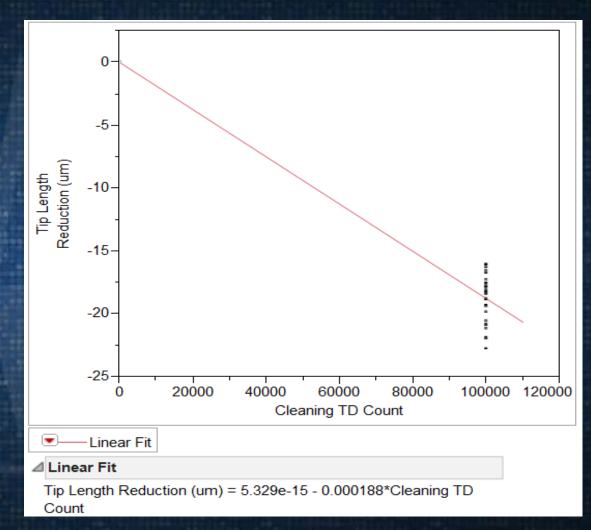
Design Requirements

Parameters	Specification			
Total number of Probes	9522			
Parallelism	X3			
Minimum pad pitch	90 um			
Pad Material	Cu Pad			
Temperature	-40C – 125C			
Pad size	Octagonal 50-60um x 50-60um Uneven Topography, 30um x 30um 5um indentation			

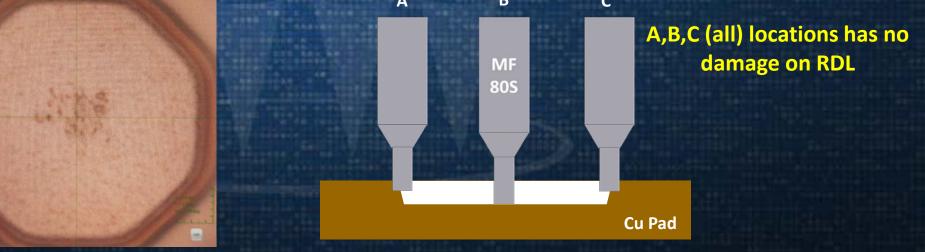

g
terial

FFI Solution Internal Characterization Results

• CRES

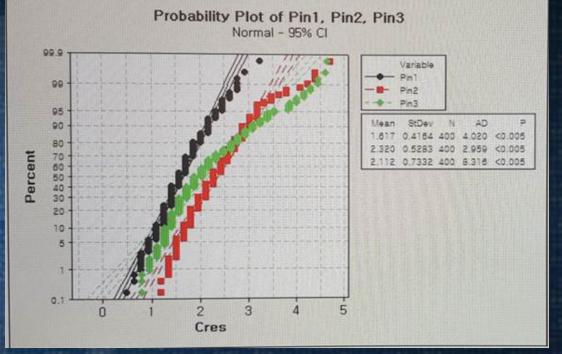

- Stable CRes on Cu wafer
- Cres OT: 75um
- Cleaning OT: 75um
- Cleaning frequency:
 - 35 TD / 5 cleaning TD

FFI Solution Internal Characterization Results

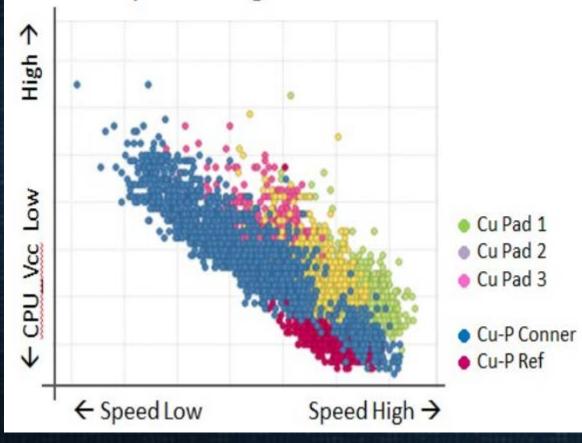

• Lifetime

- Cleaning recipe
 - Cleaning OT: 75um
 - Cleaning motion: Z only
 - Cleaning media: PL-1AH
- The average tip length reduction is 18.8um after 100,000 cleaning TDs.
- >> 1M+ TD with 35 Cres TD/5 cleaning TD frequency.

Samsung Evaluation Results Optical Image of Samsung FoPLP Pad & Contact Mark • Contact mark – ok


- Scrub Depth: 0.3~0.4um @ 100um test O/D
- Probe tip is mechanically robust
 - No broken tips when landed on the sidewall of uneven pad surface at production overdrive
 A
 B
 C

Contact Mark on Dummy Pad for Evaluation No broken tip issue at probing on the sidewall of pad SW Test Workshop | June 3-6, 2018


Samsung Evaluation Results CRES Measure by Diode Curve

- Data was collected with 3 pins for 400 T/D
- Cres tends to be ~4Ω and is acceptable based on the design performance and wafer metallurgy
- Std. Dev range is between 0.4 Ω- 0.7 Ω and this range falls within Samsung spec

Samsung Evaluation Results Function Test Margin

Speed Margin Search

SEC's opinion

Test results are acceptable but tip shape/size may further improve the performance
Target for Cu Pad is to achieve performance closer to Cu-Pillar

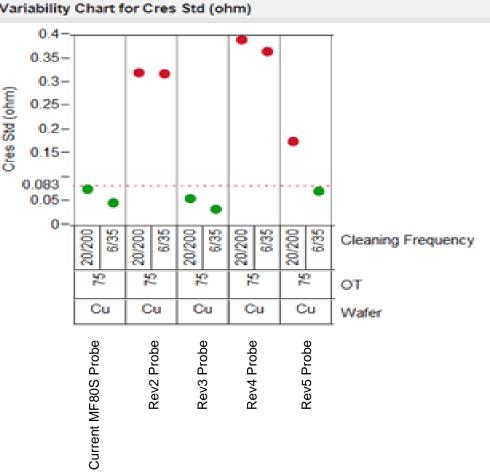
Samsung Evaluation Results Lifetime

• T/D counted at Max. O/D & aggressive cleaning recipe

- Minimal tip wear noticed after 20K cleaning touchdowns
- Estimated lifetime 700k to 1M + touchdowns

Initia

T/D	Initial		TD 5K		TD 10K		TD 20K		Review
	Min	Max	Min	Max	Min	Max	Min	Max	Initial~20K
Total Length	272	283	272	282	271	282	271	281	Worn out 1~2um (0.5um/10K)
Tip Length	106	120	107	119	107	120	105	120	


SW Test Workshop | June 3-6, 2018

TD 20K

Future Work

CRES Study on Cu

- Further Improve the CRES Std. deviation
- Optimizing Probe Design
 Tip size and shape
- Rev3 Probe has shown a marginal Improvement (25% Improvement)
- Next Step is to validate the results with Samsung

Summary

- Mechanical Robust Probe Design to probe uneven Cu Pad Stable and Low CRES to enable KGD testing on Cu pad Enabling performance closer to Cu-Pillar for chip manufacturers migrating to Cu pad KGD test before singulation for FOWLP Stable scrub size and scrub depth
- Higher Lifetime to reduce cost of test

Acknowledgements

Chun-Chi Wang, Sr. Manager, Product Development (FFI)
Jarek Kister, CTO (FFI)