

Maximizing CCC and the March to an Unburnable Probe

Dr. Hadi Najar FormFactor

Agenda

- Why Does CCC matter?
- Hybrid Probe Review
- Next Generation Probe Review
- Metallized Guide Plate Review
- Maximized CCC Conclusion

Industry Trends

- High Performance Compute and GPU applications are marching to 1kW devices (1,000A at 1V)
 - Shipping 400A devices today (400W at 1V)
 - Newest HPC devices have >50 Billion Transistors
- New nodes and technology advancements are creating downward pressure on yield
 - Yield drop with each node transition
 - Transitions to more complex digital coms (PAM4) decrease yield
 - Larger die for HPC and GPU applications are lowering wafer yield
- As yields decrease and as device power increases Probe Card capability and CCC must increase

https://www.techspot.com/article/2540-rise-of-power

Dr. Hadi Najar

CCC Terminology

- Current Carrying Capability
 - The amount of current that a probe or spring can withstand before burning or damage occurs
- ISMI CCC
 - Current applied where a 20% lower force is observed in a probe (spring)
- MAC (Maximum Allowable Current)
 - Current applied where a change in probe force or planarity is first observed
- ECCC (Effective Current Carrying Capability)
 - An averaging of total current that a group of probes can withstand before burning occurs

Why Does CCC Matter?

- Probe Current Carrying
 Capability prevents probe
 burning when something goes
 wrong during wafer testing
 - Shorts in the DUT
 - Unstable contact between the DUT and Probe card
- High CCC Probes improves uptime and MTBF as the probe card becomes more robust and resistant to probe burning

Dr. Hadi Najar

Methods for Improving CCC

Dr. Hadi Najar

Hybrid Architecture

SOCs have PWR/GND in the middle of the Device and I/O in the periphery of the Device

- PWR/GND typically at ≥150um pitch ____
 - Can use wider, high CCC probes
 - I/O typically at ≤90um pitch
 - Can use smaller, lower CCC probes
- By combining probe types in the Probe Card the Effective CCC is increased

Hybrid Spring Head Probe Card – V93K DD

Hybrid Increasing Available CCC

• FFI Hybrid probe technology increases probe card available CCC

- combining tight pitch low CCC probes and wide pitch High CCC probes in the same design
- Product A as a test case
 - Min Pitch = 90um
 - Requires MF100F for 90um pitch with CCC of 1,200 mA
 - If hybrid is used available CCC can be improved by 20% to 1,435 mA when using MF130/MF100
 Product A x8 Hybrid Available CCC Example

Product A x8 Hybrid Available CCC Example		
Hybrid Probe Type	MF100F	MF130F
CCC (mA)	1,200	1,500
Probe Count	4,216	15,248
Total CCC (mA)	5,059,200	22,872,000
Total Probe Card Available CCC (mA)	1,435	
% Improvement over Single Probe (MF100)	20%	

Maximizing Effective CCC

 Hybrid probes provide 20% higher effective CCC relative to single probe solutions

Dr. Hadi Najar

FormFactor MT Probe

- MT next generation probes provide >50% improved CCC over current gen. MEMS probes
- Higher speed performance with shorter probe length.
- Hybrid compatible MT probe family to further enhance CCC and high-speed capability.
- Metallized Guide Plate can further increase effective CCC to >3A

Maximizing Effective CCC

- Hybrid probes provide 20% higher effective CCC relative to single probe solutions
- MT Probes provide 42% higher CCC relative to last generation probes
 - 78% improvement when combined with Hybrid

Dr. Hadi Najar

What is Metallized Guide Plate? (Analogy) **OVERFLOW!!** Distributed (No MeGP) (MeGP)

What is Metallized Guide Plate?

- Metallized Guide Plates (MeGP) connect VDD and GND nets together through metal patterns on the Guide Plate
 - Provides alternative current path when overcurrent events occur
 - Enables Improved Contact with the DUT through alternative current paths

Metallization High Magnification

Dr. Hadi Najar

Examples of how MeGP can help

MeGP Technical Terminology

 r_b : Probe body + DE Cres r_c : Tip-MeGP Contact resistance r_{tr} : Trace resistance

Dr. Hadi Najar

Generalized MeGP Effective CCC model (building block)

Effective CCC $ECCC = I_{probe} \left(1 + \frac{r_b}{r_c + R_{dist}}\right)$ amplification factor

r_b: Probe body + DE Cres r_c : Tip-MeGP Contact resistance r_{tr}: Trace resistance N: Number of probes R_{dist}: resistance of distributed network

Dr. Hadi Najar

Effect of trace resistance and number of probes

(1) If $r_{tr} \ll r_c + r_b$, the CCC will be layout independent, and the general equation reduces to:

$$ECCC_{1} = I_{probe} \left(1 + \frac{r_{b}}{r_{c} + \frac{r_{c} + r_{b}}{N}} \right)$$

(2) For large gang numbers, N, the equation reduces to:

$$ECCC_2 = I_{probe} \left(1 + \frac{r_b}{r_c} \right)$$

rb: Probe body + DE Cres rc : Tip-MeGP Contact resistance rtr: Trace resistance N: Number of probes

 $1 + \frac{r_b}{r_c}$ is the best CCC amplification factor one can get.

Dr. Hadi Najar

Validation using measured CCC and True MeGP CRES data

Excellent agreement between model and experiment was achieved.
 ECCC showed a <u>65%</u> average improvement for 20 connected probes.

Dr. Hadi Najar

Model Extension to real cases – Current Spike events

Ideal case with no

Dr. Hadi Najar

Numerical Example

- For a 20-ganged probes with negligeable trace resistance, $\alpha = 32\%$ and $\beta = 68\%$.
- A 20% increase in nominal current (I_{in}), translates to 6.4% increase in I_{dist} and 13.6% in I_{probe}.

Dr. Hadi Najar

MeGP Design Challenges

- Challenge: Design of the MeGP is difficult due to the number of nets and probes involved.
 - A design error could be fatal in the yield of the MeGP leading to shorts from VDD to GND
 - Design complexity could significantly
- Solution: Automated Design and DFM rule implementation
 - Eliminates mistakes from manual design
 - Decreases design cycle time to a few hours

MeGP Verification Challenges

- Challenge: MeGP needs to be verified for shorts before stitching the probes and completing assembly of the Probe Card
 - POR process flow verifies electrical continuity with PRVX
 - If short is found the Probe Head would need to be disassembled and fixed
 - Long Cycle times at the last step of the manufacturing process
- Solution: Implementation of Flying Probe Test after MeGP Plating
 - Allows rework of GPs if needed
 - Ensures high quality through manufacturing process

Dr. Hadi Najar

Maximizing Effective CCC

- MeGP Improves Effective CCC by 65% depending on the probe architecture
- FFI has achieved the first >3A CCC Probe card at 90um pitch using Next generation MT Probes, Hybrid probes, and Metallized Guide Plate
 - Short Cycle Time and Excellent quality guaranteed through Design Automation and Outgoing Flying Probe Test

Thank You!!

Dr. Hadi Najar