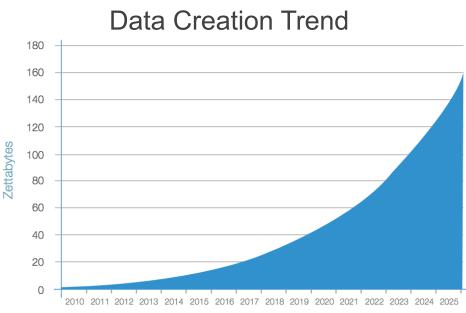


The Digital Revolution: PAM4 Wafer Test

David Raschko



a 31 kil -

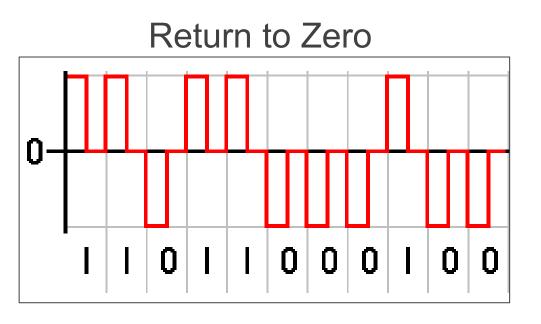
Introduction

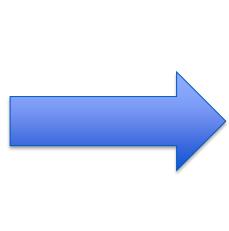
- The demand for data is increasing exponentially over time
 - With this increased demand comes a need to move data faster
 - Novel approaches for increasing data rate will need to be introduced to keep up with demand
 - How do these new approaches impact semiconductor test?
- FormFactor has investigated the impact of the upcoming changes in digital test and has developed new capability to meet the new, increased requirements

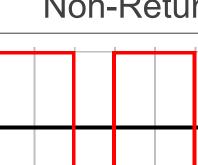
Source: IDC's Data Age 2025 study, sponsored by Seagate, April 2017

Agenda

- Introduction of Digital Test and PAM4
- What is the Status Quo for Digital Test?
- What changes with PAM4 for Test?
- How is Digital Test Managed?
- Future Solutions and Summary






What is Digital Communication?

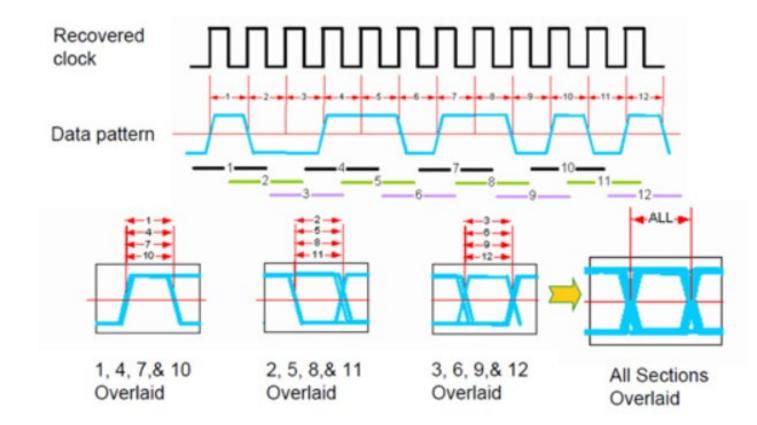
- "Morse Code"
 - Communicating in Binary (Sending 1's and 0's)
 - Direct translation from 1's and 0's to information

0

0·

	<u> </u>	<u>D</u>	Ė
2.	<u>.H</u>	.!	J _
·	M	<u>N</u>	_0_
<u>;</u> _	. <u>R</u> .	S	Ī
'_	<u>W</u>	_X_	<u>Y</u>
SE	_Z	CODE	

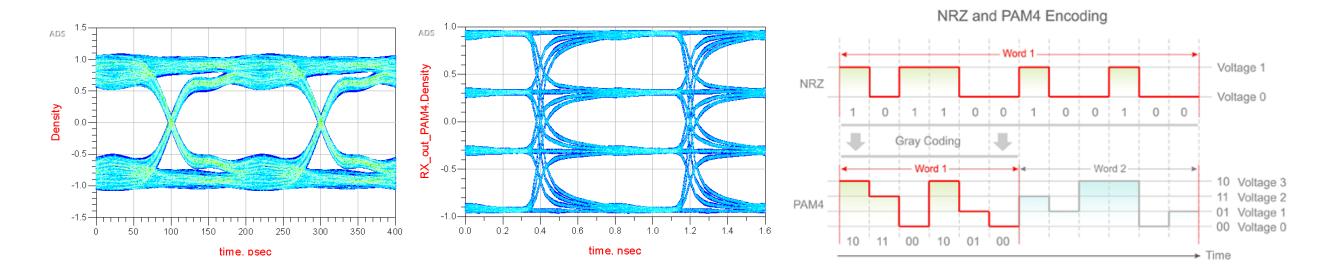
Non-Return to Zero


0	0	0	I	0	0

How are Digital Signals Tested?

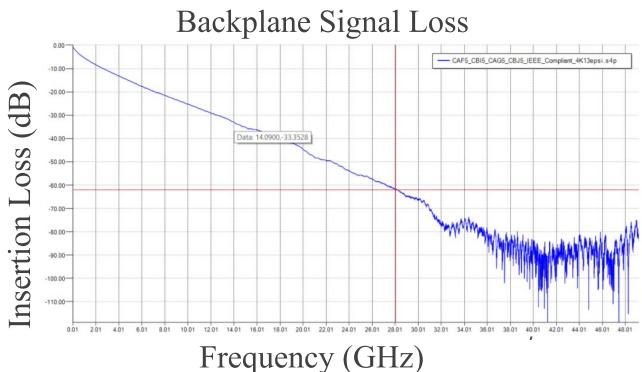
- 2 Common Methods of test:
 - BER (Bit-Error-Rate)
 - Send a known psudo-random bit stream through a device and see if the device can output the same bit-stream
 - Device performance measured as the number of bits that are not correct
 - Eye Diagram
 - Repeated Sampling of a digital signal overlayed onto the same plot
 - Depicts ability to distinguish between voltage levels

https://www.signalintegrityjournal.com/articles/432-s-parameters-signal-integrity-analysis-in-the-blink-of-an-eye



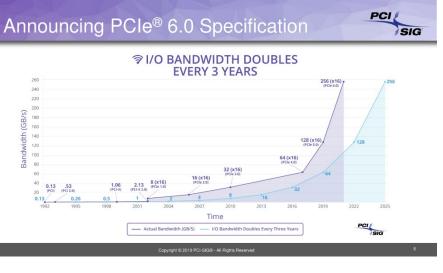
What is PAM4?

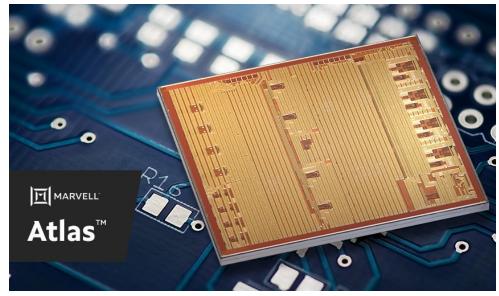
- Pulse Amplitude Modulation
 - Next generation digital signal modulation
- Uses 4 Amplitude Levels to send 2 bits per Unit Interval
 - Effectively doubles the data rate without a change in clock speed



Why Move to PAM4?

- As speeds increase loss also increases
- PAM4 2x the data rate without increasing frequency
- PCIe as an example:
 - Data rates double with each new standard
 - PCle 4.0 =16Gbps
 - 8GHz (NRZ)
 - PCle 5.0 = 32Gbps
 - 16GHz (NRZ)
 - PCle 6.0 = 64Gbps
 - 16GHz (PAM4) •



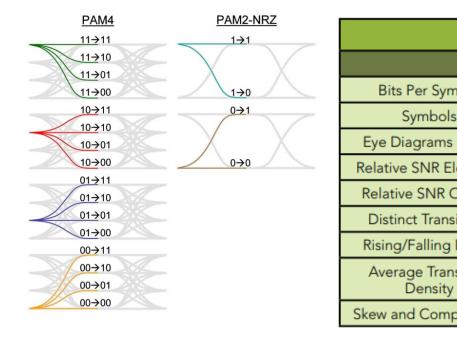


When will PAM4 Arrive?

- PCIe 6.0 •
 - Next generation PCIe communication protocol
 - Standard released in Q4 2020
- GDDR6X DRAM
 - Memory interface that uses PAM4 in conjunction with high-end graphics cards
 - Q4 2020
 - https://www.edn.com/pam4-makes-it-to-memory-interfaces/
- PAM4 DSP
 - Integration of TIAs and Laser Drivers (fiber optics)
 - https://www.prnewswire.com/news-releases/marvell-extendspam4-dsp-cloud-data-center-leadership-with-industrys-firstintegrated-solution-301306389.html

How do Specifications Change with PAM4?

- Probe Card specs traditionally derived through the Nyquist frequency
 - The Nyquist frequency is the maximum frequency fmax that can be measured with a system sampling at frequency f_{sample}
 - $f_{sample} = 2 f_{max}$
 - 15dB Return Loss
 - 3dB Insertion Loss
 - 20dB Crosstalk
 - For a 16 Gbps NRZ signal, the 3 dB point is 8 GHz using this short-hand
- Do these specs work for PAM4?

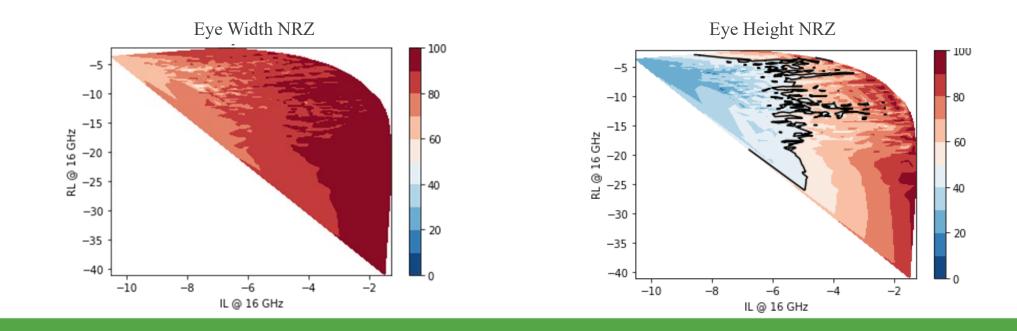


Why Will Specifications be Different?

- The specifications for PAM4 require better performance than a NRZ signal operating at the same symbol rate
- That is due to:
 - Higher number of transitions
 - Smaller change in voltage levels

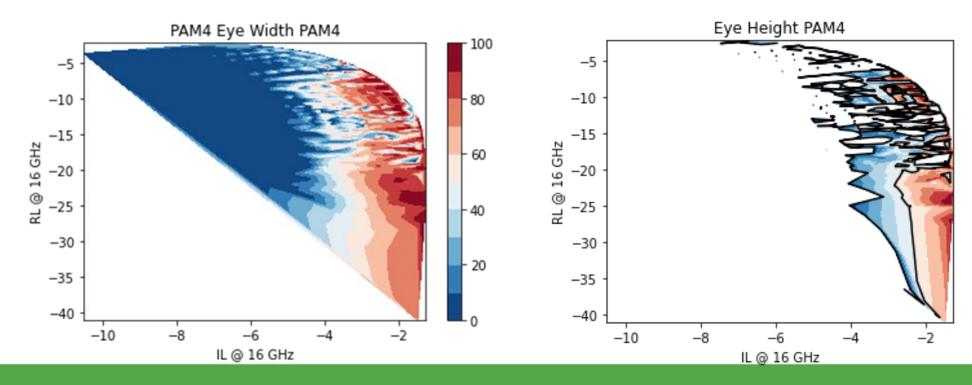
better-and-worse

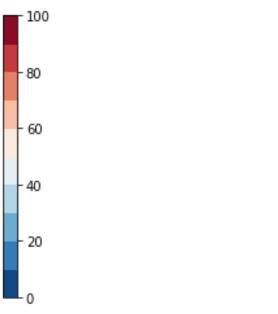
TABLE 1		
	NRZ	PAM4
nbol	1	2
	2	4
Per UI	1	3
ectrical	0 dB	9.5+ dB
Optical	0 dB	4.7+ dB
itions	2	12
Edges	2	6
sition	50%	75%
pression	Absent	Present


https://www.signalintegrityjournal.com/articles/1151-pam4-for-

NRZ Sensitivity to Loss

- Sensitivity analysis exploring eye opening vs. Insertion Loss and Return Loss
 - NRZ overall performance appears to be dominated by the height, NOT WIDTH
 - At 16 GHz, if IL is < 5 dB, then the eye is larger than 50%




PAM4 Sensitivity to Loss

- Sensitivity analysis exploring eye Width vs. Insertion Loss and Return Loss
 - To maintain a 50% eye opening Insertion loss must be better than -3dB and Return Loss must be better than -10 dB at the Nyquist Frequency
 - Represents a ~2x increase in Probe card performance compared to NRZ

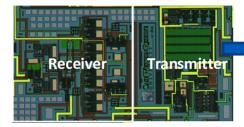
and Return Loss

Observations on PAM4 Eye Height and Width

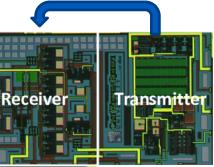
• PAM4 and NRZ Probe Card Spec:

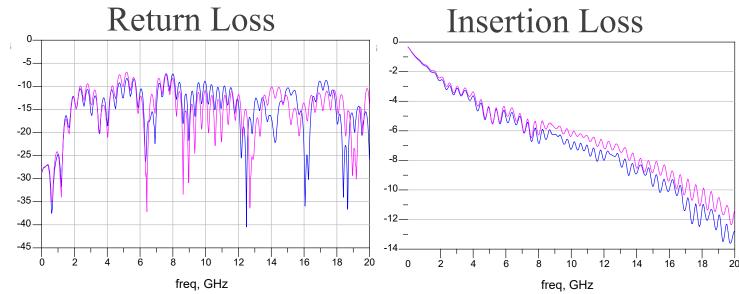
Digital Protocol Type	Insertion Loss Spec	Return Loss Spec
NRZ	-5 dB	-10 dB
PAM4	-3 dB	-10 dB

- It appears that the eye height is more sensitive to performance than the width
 - Most likely since Insertion Loss is known to be more important to the performance than Return Loss due to its impact on overall system loss
 - IL affects the height more than the width, and RL affects the width more than the height


han the width

How is Digital Test Managed?

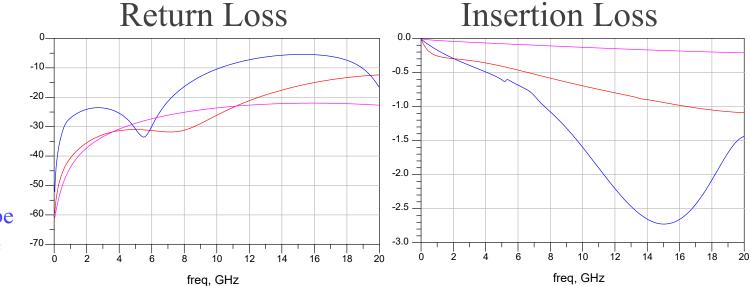

- Testerization Direct Connection to Tester Channel
 - Probe -> MLO -> PCBA -> Tester Resource
- Loopback Test Signal goes from DUT TX to RX
 - Probe -> MLO -> Probe



Testerization Probe Card Performance

- Testerization = Probe + MLO + PCBA to tester Resource MLO and PCBA Loss dominate the performance due to long path lengths
- Max Speed:
 - PAM4 ~10Gbps
 - NRZ ~10Gbps

Pink = PCBA + MLOBlue = PCBA + MLO + MEMS Probe



Loopback Probe Card Performance

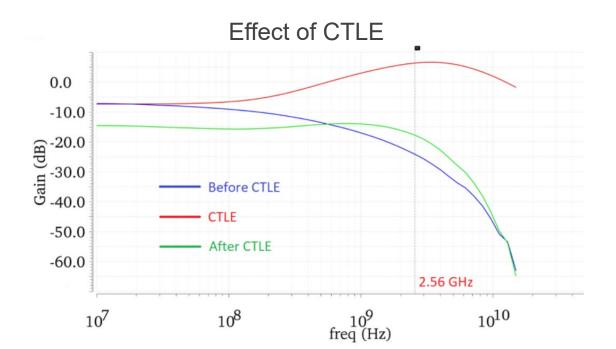
- Loopback = Probe + MLO + Probe
 - MLO Loss ~= Probe Loss
 - Performance gated by MLO length and probe loss
- NRZ ~ 32Gbps
- PAM4 ~ 64Gbps

Pink = MLO OnlyBlue = MLO + 60 ohm MEMS Probe Red = MLO + 50 ohm MEMS Probe

Insertion Loss

Future of Digital Test

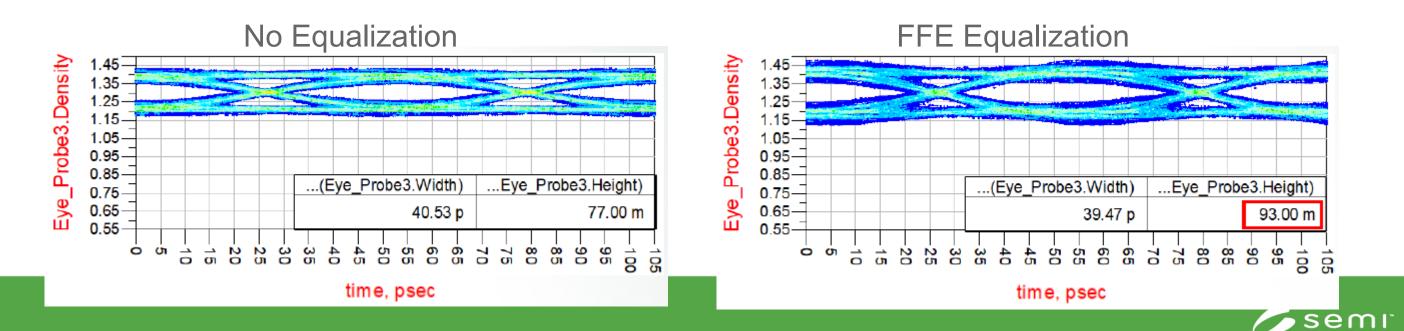
- How do we continue to manage loss in the probe card as speeds continue to increase?
- 2 Methods:
 - Implementation of equalization at wafer test
 - Improved Probe Card Performance



Equalization: Extending Probe Card Performance

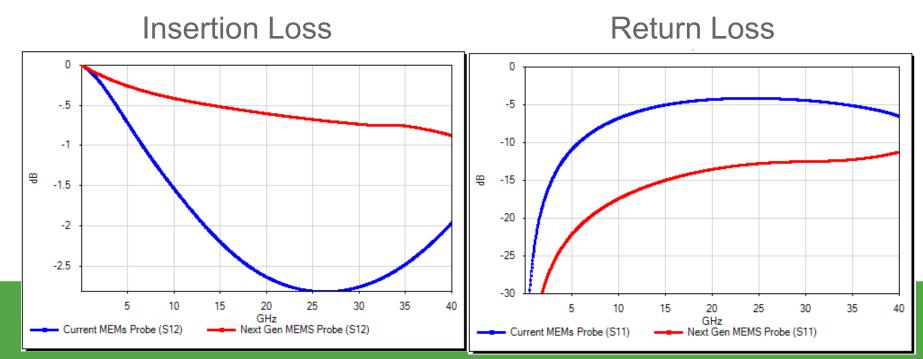
- Equalization = Frequency shaping filters that flatten the channel response up to a certain frequency
- Continuous Time Linear Equalization (CTLE)
 - boost the higher frequencies at the receiver to bring all frequency components of the signal to a similar amplitude
- Feed-Forward Equalization (FFE)
 - Creates multiple delayed versions of the input signal that are added back to the signal with the proper weights
- Decision Feedback Equalization (DFE)
 - non-linear equalization which relies on decisions about the levels of previous symbols (high/low) to correct the current symbol

of-the-equalizer-b fig2 340291161


https://www.researchgate.net/figure/Schematic-of-a-CTLE-a-and-AC-response-

Impact of Pre-Emphasis on Probe Card Performance

- Feed-Forward Equalization used to improve probe card performance on **18Gbps channel**
 - 4.1 dB FFE applied to simulation
 - Improved eye opening from 77mV to 93mV
 - 20% improvement in eye height •



FFI Products for Digital Test

- Next Gen MT Series MEMS probe solves High-Speed Test Requirements
 - Probe is >20% shorter compared to conventional MEMS probes for reduced inductance
 - >-0.5 dB Insertion Loss at 16GHz (PCIe 5/6)
 - <-15 dB Return Loss at 16 GHz (PCIe 5/6)

uirements r reduced

Current MEMS Probe meets requirements for PCIe 3 and PCIe 4

Digital Test Summary

PAM-4 specs will need to be tighter compared to NRZ:

Digital Protocol Type	Insertion Loss Spec	Return Loss Spec
NRZ	-5 dB	-10 dB
PAM4	-3 dB	-10 dB

- Testerization has problems with path length loss limiting performance to ~10Gbps
- MLO Loopbacks have significantly lower loss, but the probe begins to become the dominate loss factor
- Equalization improves probe card performance, but requires customer partnerships to understand the required inputs/outputs

Conclusion

- The requirements for PAM4 vs NRZ indicate that probe card specifications should be more stringent than that for NRZ probe cards
- As complexity of digital test increases, simulation partnerships with equalization will need to be developed
- FFI Products are ready for the challenges being presented by the move to PAM4 with custom solutions

