High Density Probe Card PCB’s,
Are you your own worst enemy to achieving Higher Parallelism on your Designs?

Shawn O. Powell CID+
Mark Ojeda

June 2-5, 2019
Problem Statement

• As Probe Card PCB’s complexity increases, Most probe card designs have not paid enough attention to the Power/Channel Assignment.
 – An inefficient channel assignment can be the make or break issue to manufacturing your High Parallelism PCB
 – Good channel assignments give the best advantage to succeed
How do you know you have a problem?

• **Probe card vendors are asking you to change**
 – PCB Design is not routable
 – Can’t meet your parallelism
 – Layer count goes up, along with price
 – PDN reduced from target specification
 – Noise issues at test
 – Increased Lead time for Design
How bad can it really be?

- This Power/Signal routing was almost impossible. (<500 DUTS)
 - Increased Signal and Power layer requirements (over 200%) for both
This is what it could be!

- This is a real design in production today at 2007 DUT parallelism.
How do you fix your problem

• Do you review your own channel assignments?
 – If Yes,
 • You are helping your company achieve higher parallelism!
 – If No,
 • You may be your own worst enemy to achieving Higher Parallelism

• Creating a Tool for reviewing your assignments visually
 – Would be a great investment
 – Avoids waiting for Vendor feasibility analysis
 – Creates a more efficient Customer / Vendor hand off
Why is the Channel Assignment so Important?

• Complex designs are pushing the envelope of PCB manufacturing
 – We need to increase layers just to make the design possible!
 – Alternative manufacturing strategies may have to be employed
 – Even simple Designs will benefit from an efficient channel assignment

• Optimizing channel assignment decreases your complexity
 – A good assignment accounts for resource entry on the PCB
 – Reduces/Eliminates need for PCB Manufacturing/Routing feasibility
 – Increases layer density, and performance
• **Does the Tester limit an efficient assignment?**
 – Some testers restrict where assignments physically reside on tester
 • These may not be able to be resolved easily without talking to your Tester vendor
 • Example: Signal and Power resources placed physically separate on this interface

• **Is the Tester partially populated or has concentrated resources?**
 – Partially populated testers still produce a complex PCB,
 • Concentrated areas of routing and blank areas will require copper balancing
 – Increases your layer count
Solving Tester Limitations

- When testers have assignments that can’t be assigned radially,
 - The focus should be on the DUT array and not the tester

- This tester has resources concentrated in some areas of the tester

- By focusing the net assignments on the DUT array, a perfect channel assignment was still possible
 - Bottom image, routing was not possible

This is the same Design!
Solving Tester Limitations

• The pictures below shows all net classes separated to show how the signal assignment was optimized, despite the tester restriction

• This was a 4710 DUT Probe Card
 – Only 64 PCB layers
What makes a good Channel Assignment

• Radial Assignments in quadrants are always best
 – These make everything easy to route

Quadrants can be set either way, but crossing nets between quadrants creates conflict

No signals cross other groups from one connector
What makes a good Channel Assignment

- Avoid crossing Powers
 - Crossing powers is the #1 way to increase your layer count, and decrease your PDN performance
What makes a good Channel Assignment

- The Tester architecture will define where the longest traces go
 - Assigning longest nets at 45 degree angles creates longer overall routes
 - Sometimes 1 DUT will go to multiple sites on the board
What is my benefit when optimizing my own channel assignments?

• Improved Lead times for your Probe Card Delivery
• Eliminate routing feasibility work
• Lower Layer counts
• Shorter overall IO/DRV routing lengths (Improved Performance)
• Reduce likelihood of hitting PCB manufacturing restrictions
• Ability to reach the increased parallelism with fewer risks
• Simpler design at a lower cost
Thank you