Improving Probe-Tip S-parameters Measurements with Power Calibrations

Choon Beng Sia, Ph.D.
FormFactor, Inc.
Agenda

- Market Trends
- Quick Recap of S-parameters Measurements
- Current Practices for Wafer-level RF Measurements & Challenges
- Proposed Probe-tip S-parameter + Power calibration
- Summary
Market Trends

- **5G will dominate RF device growth**
 - Not just for mobile comms but for
 - IoT, eHealth, Transportation, Industrial Machine Control & more
 - Higher Operating Frequencies
 - 28 to 73 GHz
 - ↑ New 110 GHz Systems around the world
 - Important & Urgent to address Challenges in testing RF devices at these frequencies.

5G 2020

- Very High Data rate
- Very High Capacity
- Reliable & Secure
- Huge no. of Devices
- Long Battery Life
- Very Low latency

... Everything Everywhere Connected
Quick Recap of S-parameters Measurements

- **Forward**
 - Port 1 - Stimulus
 - Port 2 - Load
 - \(S_{11} = \frac{\text{Reflected}}{\text{Incident}} = \frac{b_1}{a_1} \quad | \quad a_2 = 0 \)
 - \(S_{21} = \frac{\text{Transmitted}}{\text{Incident}} = \frac{b_2}{a_1} \quad | \quad a_2 = 0 \)

- **Reverse**
 - Port 1 - Load
 - Port 2 - Stimulus
 - \(S_{22} = \frac{\text{Reflected}}{\text{Incident}} = \frac{b_2}{a_2} \quad | \quad a_1 = 0 \)
 - \(S_{12} = \frac{\text{Transmitted}}{\text{Incident}} = \frac{b_1}{a_2} \quad | \quad a_1 = 0 \)

- **S-parameters are relative and not absolute measurements!**
Current Practices for Wafer-level RF Measurements & Challenges

- Only Adopts S-parameter calibration
 - Since S-parameters are relative measurements, Probe-tip power calibration is redundant – or so we thought?

- Uncalibrated RF Source Power – Affects Accuracy
 - Large RF power, Stable Cal but Active Device’s DC bias condition would be incorrect
 - Small RF power, Difficult to get a stable calibration
 \[\Rightarrow\] Need to Optimize RF power & make it Constant w.r.t. Frequency

- Post-Calibration Stability – How long a calibration state can lasts?
 - Affects Accuracy & Measurement Throughput
 - Environment & Cable lengths are often assumed to be primary root cause
 - Control Lab temperature/Humidity
 - Use Shortest cable possible
 - Optimizing VNA instrument settings eg Low IFBW of 5 Hz
Typical Single Sweep 110 GHz Probe System Setup
Implications of Inaccurate RF Source Power

- With device scaling, $L_G \downarrow$, $V_T \downarrow$
 \Rightarrow Optimal RF power \downarrow
Uncalibrated Probe Tip RF Source Power

Source Power @ Tips

- Source Power = -20 dBm setting
- Power should be constant w.r.t freq.

Measured Power @ P2 Receiver

- P1 & P2 connected by low-loss thru'
- P2 should detect -20 dBm
Post-Calibration Stability (No Tip Power Cal)

- Probes in Air as OPEN, Source power = -20dBm, IFBW = 10 Hz, LRRM cal.

- ±0.1dB as criteria, Cal. only last 10 mins

- Test engineers need to recalibrate every 10 mins
 - Passive devices take 1 min
 - RFCMOS device requires about 30 mins to measure
Probe-Tip Power+S-parameter Cal.

- **Create Power Table (one time pain)**
 - Characterize losses to the cables
 - Extend losses to the RF probe tips
 - Table is reusable unless setup modifications

- **Wafer-Level Power+S-parameter Calibration**
 - Perform Power cal. with power table
 - Perform standard S-parameters cal.

- **No removal/installation of RF cables/probes during calibration**

- **Simple & Convenient**

- **Takes about 10% more time to complete Cal.**
Creating Power Table for Power Calibration
Creating Power Table for Power Calibration

Measuring Actual Power at the 1mm cable
RF Power @ Probe Tips after Power Calibration

- **Consistent Source Power**
 - RF Source power Consistent

- **P2 detects -20 dBm regardless of freq.**

Dr Sia Choon Beng, 2019
Probes in Air - Calibration Drift over 20 Hours

- Cal. Valid for only 10 mins
- Cal. Valid for 4 hours!
Probes in Air - Calibration Drift over 20 Hours

- S-parameters Calibration
 - Cal. Valid for only 10 mins

- S-parameters+Power Calibration
 - Cal. Valid for 4 hours!
Summary

- Power Calibration is Critical even though S-parameters is a relative and not absolute measurement!

- Adopting Power+S-parameters Probe Tip Calibration takes 10% more time but will...
 - Ensure Accurate RF source power is applied to Active Devices
 - Improve Calibration Stability to more than 4 Hours
 - Maximize Test Throughput