

Next Generation DRAM Temperature Requirements and Impacts to Full Wafer Contactor Probe Card Performance

SANSUNG FORMFACTORTM

Hyun Ae, Lee Samsung, Engineering Director MJ Lee (Speaker)

FormFactor, Director Product Marketing, Probes BU

TUE OR ase

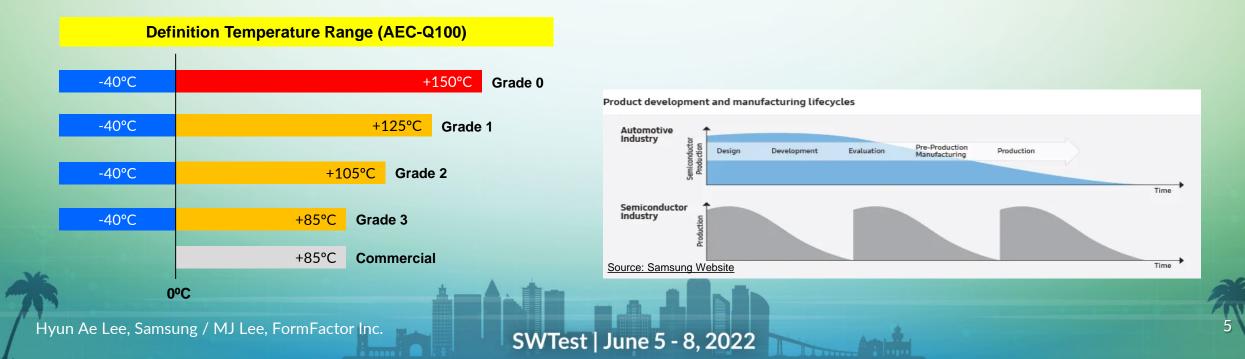
We don't barbeque the cellphone

and aptop.

Overview

- Automotive IC Market Overview
- Automotive IC Test Requirements and Probecard Challenges
- FormFactor High Temperature Probecard Solution
- DRAM wafer level reliability test requirements and Grade-0 test result
- Summary and Acknowledgement

Automotive IC Market Overview


Key Drivers

- Critical Safety System
- Increased fuel efficiency
- Navigation and communication
- Comfort & Entertainment features

Automotive grades and lifecycles

- Automotive Temperature Grades
 - 4 grades by temperature range. 40°C to +85°C, +105°C, +125°C, +150°C
- Additional process requirement
 - Additional process steps to ensure the Quality and Reliability.
- Special BOM consideration
 - Special BOM to ensure the Performance and Lifecycles

Reliability Test at Wafer Level

• Package Sort Test Item is moving to Wafer level Test

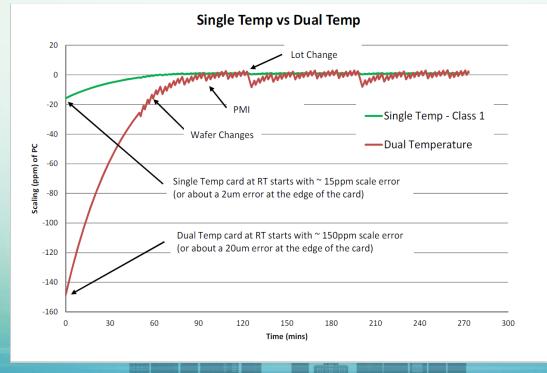
- WLBI (wafer level burn-in) at Sort Step, Test Items are enforced, Package yield is improved
- Package Reliability Test Item is moving to Wafer level Reliability Test
 - Improves memory device quality faster than package reliability step.

• Reliability Items (Temperature related)

Stress	ABV	Test Method	Additional Requirement
Temperature Cycling	TC	JEDEC JESD22-A104 and Appendix 3	Grade 0: -55°C to +150°C for 2000 cycles or equivalent. Grade 1: -55°C to +150°C for 1000 cycles or equivalent. Grade 2: -55°C to +125°C for 1000 cycles or equivalent. Grade 3: -55°C to +125°C for 500 cycles or equivalent
Power Temperature Cycling	PTC	JEDEC JESD22-A105	Grade 0: Ta of <mark>-40°C to +150°C</mark> for 1000 cycles. Grade 1: Ta of <mark>-40°C to +125°C</mark> for 1000 cycles. Grades 2 and 3: Ta -40°C to +105°C for 1000 cycles.
High Temperature Operating Life	HTOL	JEDEC JESD22-A108	Grade 0: +150°C Ta for 1000 hours. Grade 1: +125°C Ta for 1000 hours. Grade 2: +105°C Ta for 1000 hours. Grade 3: +85°C Ta for 1000 hours.
nFactor Inc.			SW/Test June 5 - 8 2022

Key Considerations for high temperature probecard design and manufacturing

• Spring thermal stability


- Higher temperature capable spring material vs. current spring material
- Spring repair process development
- Interposer thermal stability
 - IP temperatures from 125°C to 155°C depending on spring count
- PCBA thermal stability and functionality
 - PCBA temperatures from 110°C to 150°C depending on probe count
 - Material stability Higher Tg material needed
 - Component operating temperatures Capacitor, ADG, EEPROM, FPGA, Relay

• DUTlet component

- DUTlet temperatures from 130°C to 160°C depending on probe count
 - Caps on DUTlets rated to 105°C/125°C typically

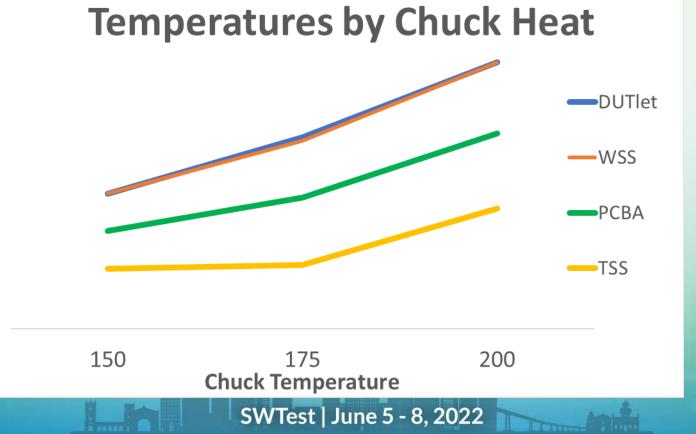
FormFactor High Temperature Solution

- Formfactor provides Dual Temp & Single Temp Probecards for high temperature demand
- Two types Spring T11.2P for up to 130°C, T11.4P for >130°C
- Sophisticated Component selection considering high temperature on PCB

Wide Temp / Ultra High Temp Challenges

Thermal Z Behavior – to avoid thermal deflections

- Probe card Z movement is a function of many factors
 - Materials, Probe count, Cardholder material, Tester head interface, etc.
- Different CTE values TSS(tester side stiffener), PCBA, WSS(wafer side stiffener).
- Temperature difference by the location
- WSS CTE is selected to match the wafer expansion (dual temp), or to minimize expansion (single temp)
- TSS CTE required to minimize Z movement at Hot/Cold.
- The FormFactor Matrix card architecture has been extensively characterized and refined over hundreds of designs for many tester/prober combinations and has been optimized to provide industry leading thermal stability.



Ultra High Temperature

• Thermal Characterization at 150/175/200°C

MJ Lee, FormFactor Inc.

• Instrumented measurements of card temperatures at different chuck temperatures (15K spring Matrix probe card)

Grade-0 high parallel probecard development

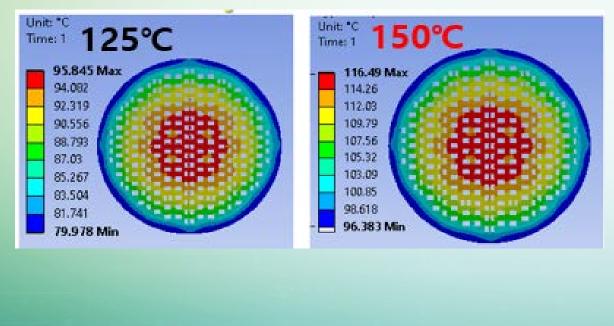
• Objective

- To verify automotive grade-0 (-40°C~+150°C) probecard in main memory device
- To verify the probecard running at Reliability test condition (>3 days wafer chip test condition)

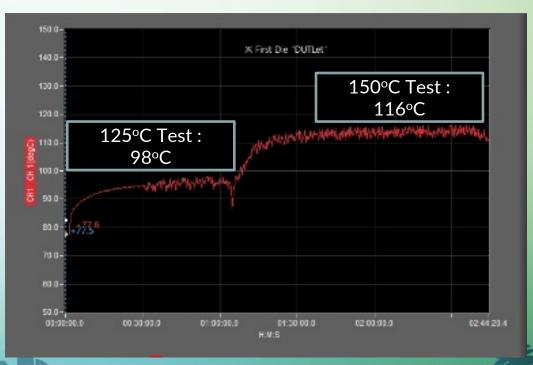
• Card Test condition and check points

- To verify stable contact mark at +150°C wafer test condition
- To check thermal movement for 72-hour (3-day) contact test condition

Grade-0 high parallel probecard development

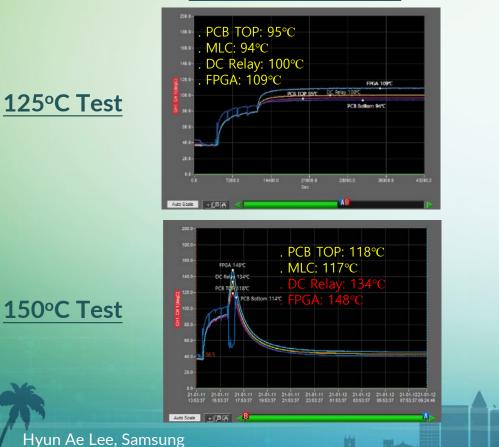

5 key considerations for 150°C memory wafer level test

- 1. To decide probing condition (soaking condition) with different thermal uptake between probecard extraction and memory wafer at 150°C
- Data error possibility at high voltage, high current test condition probecard component burn-out or degradation check
- 3. Probe contact stability at long test time (>72hours) contact- Stable contact with >30% Pad edge margin (X, Y) and Z-direction stabilization within 1-hour.
- 4. To verify any system error or probecard damage possibility in thermal cycling (-40°C to 150°C or 150°C to 40°C)
- 5. To verify probe life cycle at high stress condition (high voltage/current) in long contact time condition for stable reliability data and probecard quality.

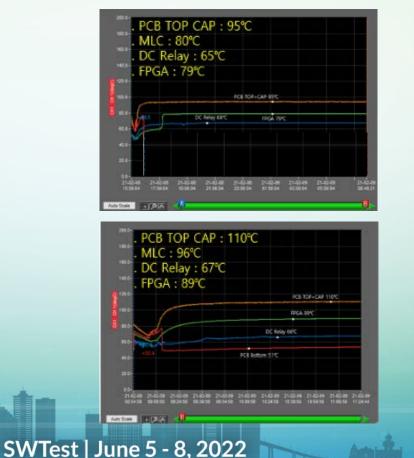


Temperatures with non-operating condition

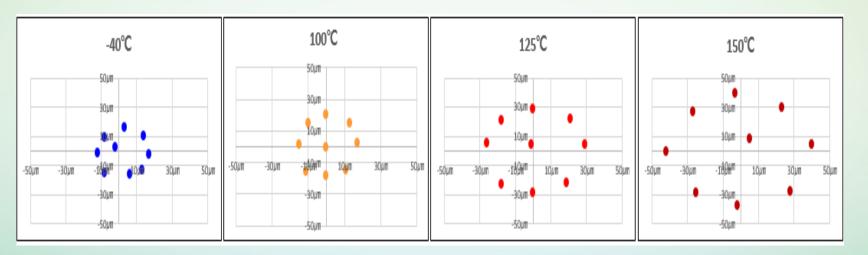
- Dutlet (Contactor) temperatures at Chuck temperature 125°C and 150°C
- FFI simulation is matched with Samsung measurement
- Simulation at 125°C and 150°C



Measurements at 125°C and 150°C


Temperature measurement at memory device operating condition – with normal temp probecard

- Considering over-heat, component should be placed outside chuck area
- Heating components such as FPGA/Regulator/DC Relays are located outside chuck center stable operation when wafer chip level test

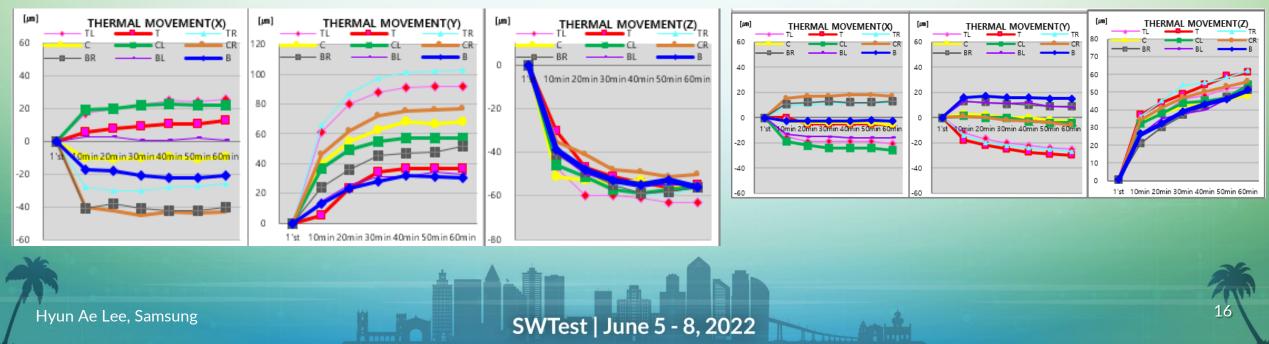

Standard Probecard

Grade-0 Probecard

14

Contact Mark thermal movement

- Wafer PAD contact mark ±14µm shrunken at -40°C and ±40µm extracted at +150°C
- These contact marks track the Silicon Wafer movement through this temperature range
- Proper probe offset and prober each cold and hot temp soak time. To make stable contact mark in PAD.



XYZ thermal movements at Cold and Hot Test

- Achieved stabilized contacts within an hour
- Result after 150°C 72 hours contact
 - Contacts are in 58% of PAD size, Achieved Pad edge margin >40%

HOT (150°C) THERMAL MOVEMENT (OD:180 µm)

COLD (-25°C) THERMAL MOVEMENT (OD:180 µm)

Achievement High Parallelism Memory Wafer Test Solution for High Temperature

	2015	2019	2021				
FF Temperature	130°C	130°C	175°C				
Samsung R&D	-25°C ~ 125°C	-25°C ~ 125°C	-25°C ~ 150°C				
Probe card Parallel	HDT(X6TRE) 5TD @ 480mm	XDT(X16TRE) 2TD @ 520mm	HDT(X6TRE) 2TD @ 480mm				
Probe Type	T11.2	T11.2	T11.4				
Tip Force (gram force/mil)	0.8gf/mil	0.8gf/mil	0.8gf/mil				
Probing Margin(%)	>±15%	>±15%	>±15%				
Soak Time	60 min	20 min	20 min				
Thermal offset	-2.4um / 0.3um	2.4um / 2.4um	-3um / 3um				
Result of 1TD Probing	Qualified	Qualified	Qualified				

Summary and Acknowledgements

Summary

- Automotive Grade-0 Memory Wafer Level Test is feasible with High Parallel Probecard
- Memory Wafer Level Reliability Test (>72 hours contact test) at Grade-0 condition is feasible in PAD size with >40% PAD Edge margin.
- Maintain stable reliability data and probecard quality under probe lifecycle at high stress condition (high voltage/current) in long contact time condition.

Customer Acknowledgements

- Jung Bae Ahn, Samsung Memory EDS Team
- FormFactor Acknowledgements
 - Joe Ceremuga, Kalyanjit Ghosh, FormFactor R&D Team

Questions?

- Hyun Ae Lee : <u>ha0513.lee@samsung.com</u>
- MJ Lee : <u>mjlee@formfactor.com</u>

THANK YOU

SANSUNG SANFACTOR

June 5 - 8, 2022