

TEST VISION SYMPOSIUM

From Nanometer to Terahertz: Future Test Innovation Opportunities

Next Generation KGD Memory Test Achieved Wafer Level Speed Beyond 3GHz/6Gbps

Byeongseon KoSK hynix, Engineering DirectorMJ Lee (Speaker)FormFactor, Director Product Marketing, Probes BU

Agenda

Is Known Good Die/Stack Test Needed?

Advanced packaging complexity trend KGSD Tester Insertion in HBM manufacturing flow

KGSD (known good stacked die) test requirements challenge probe card design

DRAM speed spec drives KGSD test speed requirement

FormFactor HFTAP Products

FormFactor HFTAP series for high-speed wafer testing

Probe Card solution for KGD (known good die) test

Probe card solution case study: KGS HBM2 and KGD LPDDR4

Electrical Performance Validation

Probe card design simulation & measurement vs. production test result

Feature Development Direction and Acknowledgement

Conclusion, feature development and acknowledgement

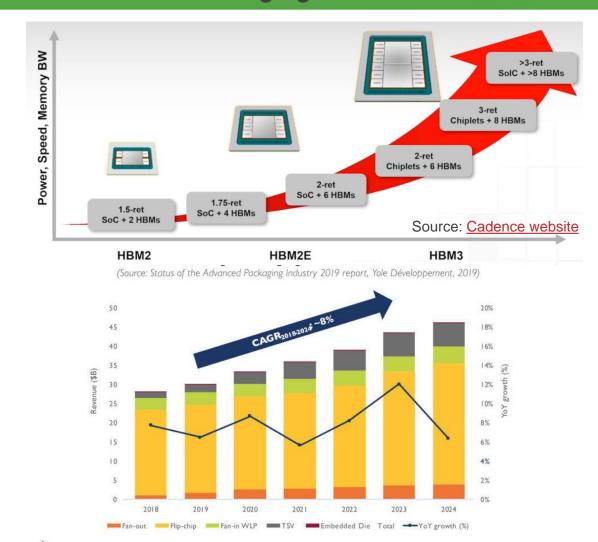
Why DRAM KGSD Test Needed in Advanced Packaging?

NOLE

Increased Complexity of Advanced Packaging Requirements:

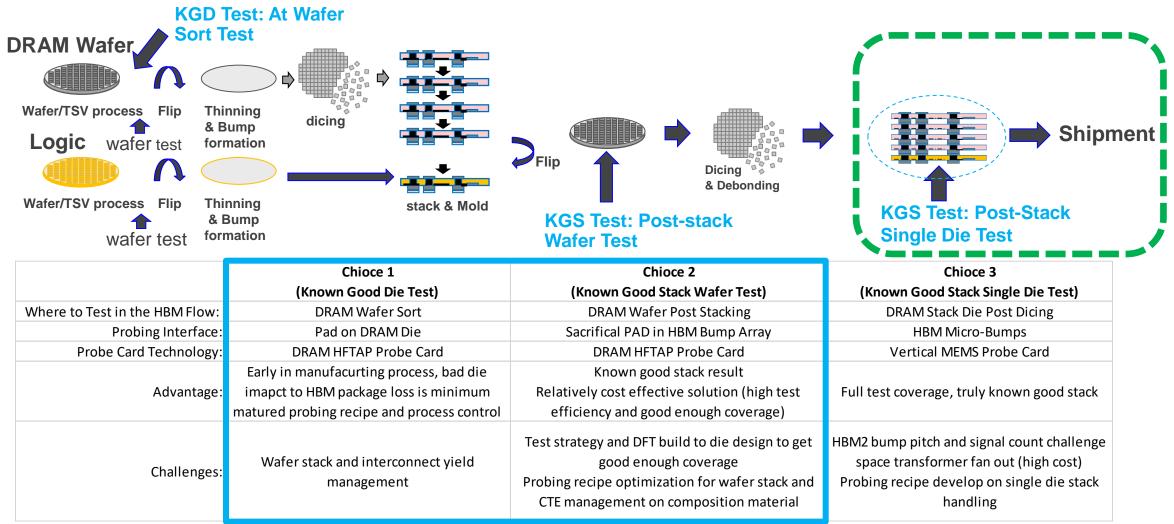
- Simple SoC \rightarrow HBM to multiple SoC \rightarrow multiple HBM
- HBM DRAM stack increase
- Bigger Package size

TEST VISION


SYMPOSIUM

More Advanced Packaging is Required:

- Revenue Growth in CAGR ~8% (2018~2024)
- Offers more features and computing power than individual IC package result into market growth

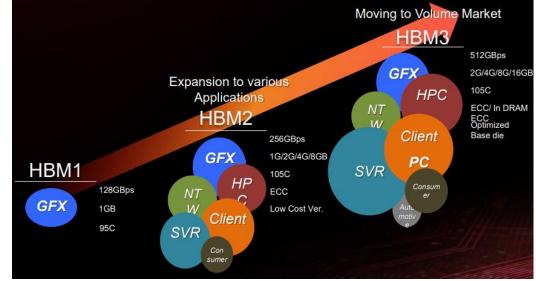

DRAM KGD, KGSD Test Help Reduce Risk and Cost on Advanced Packaging/HBM

- Higher complexity \rightarrow lower yield
- Higher complexity \rightarrow higher packaging cost
- Earlier defect detection help save package cost

https://www.swtest.org/swtw_library/2017proc/PDF/S09_01_Nhin_SWTW2017R2.pdf

IN CONJUNCTION WITH

S E M (CO)


Next Generation KGD Memory Test Achieved Wafer Level Speed Beyond 3GHz/6Gbps – Byeongseon & MJ

• HBM Application Expands to Broader Market

- From Graphic to Server, AI, Automotive, HPC
- HBM to HBM3 Performance Enhancement
 - Faster data rate speed
 - Higher memory bandwidth
 - Wider temperature range
- KGD Test Requirements, PC Challenges
 - Probe Card speed requirement from 1.6GHz to >3GHz
 - Temperature range from -40~125C to -40~150C
 - Test efficiency to meet high volume production

Source: SK Hynix Presentation "An In-depth Study of High Bandwidth Memory"

	DDR4	LPDDR4(X)	GDDR6	HBM2	HBM2E (JEDEC)	HBM3 (TBD)
Data rate	3200Mbps	3200Mbps (up to 4266 Mbps)	14Gbps (up to 16Gb ps)	2.4Gbps	2.8Gbps	> 3.2Gbps (TBD)
Pin count	x4/x8/x16	x16/ch (2ch per die)	x16/x32	x1024	x1024	x1024
Bandwidth	5.4GB/s	12.8(17)GB/s	56GB/s	307GB/s	358GB/s	>500GB/s
Density (per package)	4Gb/8Gb	8Gb/16Gb/2 4Gb/32Gb	8Gb/16Gb	4GB/8GB	8GB/16GB	8GB/16GB/ 24GB (TBD)

Next Generation KGD Memory Test Achieved Wafer Level Speed Beyond 3GHz/6Gbps – Byeongseon & MJ

- FormFactor has provided HFTAP product class K5, K8, K10, K16, K22
 - HFTAP probecard enables wafer testing up to 4.2Gbps

FormFactor's HFTAP Probe card

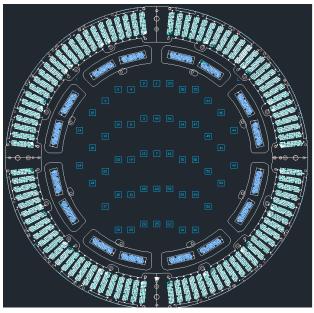
*) HFTAP: High Frequency Test at Probe

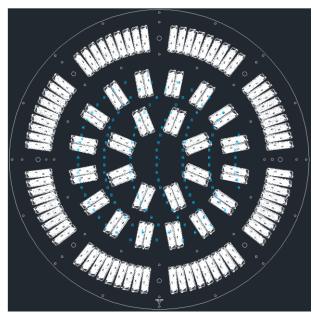
		M	emory KGDS	Speed Te	st Requ	irement vs	. FFI Prod	duct L	.ine		
FFI Product Platform	FFI HFTAP Product Class	Clock (MHz)	Data Rate (Mbps)								
Matrix	K22	2134 1867				PDDR4x					
Matrix	K16	1600		LPDDR4						HBM2e	
Matrix	K12	1339	2677								
Matrix	К10	1067 933				HBI	DDR M2	4			
Matrix, PH	К8	800 667		DDR3							
Matrix, PH	K5	534	1067								
				2015	20	16 201	.7 20)18	2019	2020	

- FormFactor has provided HFTAP product class K5, K8, K10, K16, K22
 - HFTAP probecard enables wafer testing up to 4.2Gbps
- FormFactor introduces K32 and K40 class
 - To enable leading edge higher speed wafer test demand

FormFactor's HFTAP Probe card

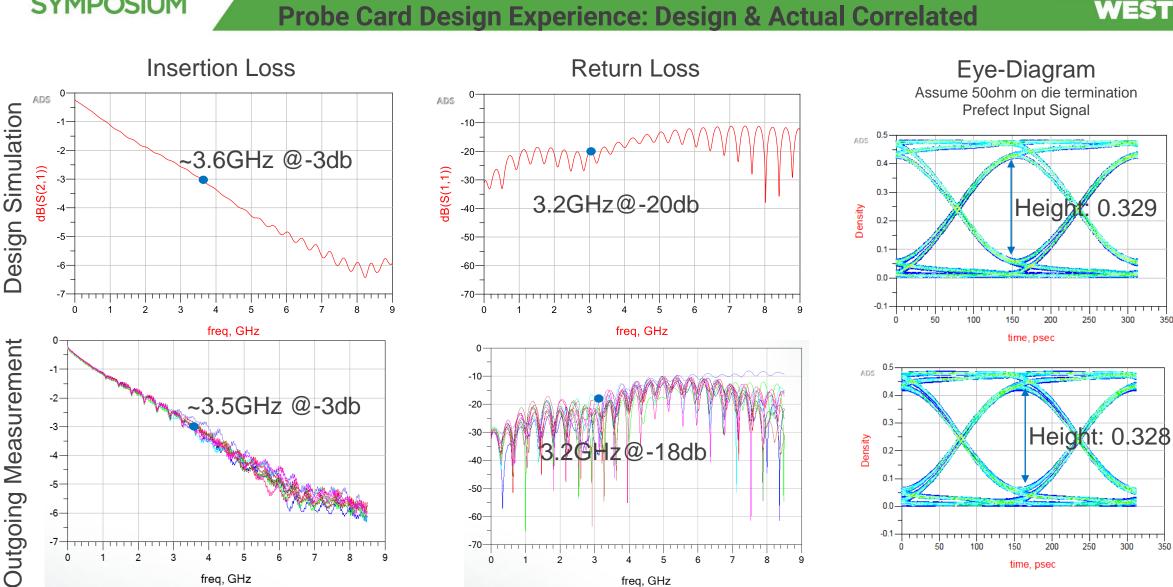
*) HFTAP: High Frequency Test at Probe


		Clask	Data Data	-							
FFI Product	FFI HFTAP	Clock	Data Rate								
Platform	Product Class	(MHz)	(Mbps)								
Matrix	K40	4267	8533								
	K40	3733	7466								
D. Contraine	1/22	3200	6400						LPDDF	R5 H	BM3
Matrix	K32	2800	5600		_						
Matrix	К22	2134	4267		LPC	DR4x					
		1867	3733								
Matrix	K16	1600	3200	LPDDR4					HBM2e	DD	R5
Matrix	K12	1339	2677								
D. C. et al.	×40	1067	2133				DDR4				
Matrix	К10	933	1866			HBN					
	VO	800	1600								
Matrix, PH	K8	667	1333	DDR3							
Matrix, PH	K5	534	1067								
				2015	2016	2017	2018	2019	2020	2021	202



- KGSD HBM2 Probe Card
 - Max 64DUTs, 18TD, T11.2P (-40~150°C)
 - Target Speed 3.2GHz
 - Advantest T5503 HS2 H7-010508

- KGD LPDDR4 Probe Card
 - Max 128DUTs, 45TD, T11.2P (-40~150°C)
 - Target Speed 3.2GHz
 - Advantest T5503 HS2 H7-010569



Both Probe Card Solution Achieve Highest DUT Parallelism and Speed Requirement (>3GHz), T11.2P Offers Wide Temperature Range

Probe Card Design Experience: Design & Actual Correlated

350

350

IN CONJUNCTION WITH

SEMICON

		SULAN (IC	K VS. TAC	1										
		PATTERN :	(B16+B1	6Inv)X3X8X	2									
		VDD :	1.020V											
		2.400NS	2.450NS	2.500NS	2.550NS	2.600NS	2.650NS	2.700NS	2.750NS	2.800	15			
ed		v	v	v	v	v	v	v	v			Ideal UI	UI	ΔU
;]	[ps]	**					1.1				#]	[ps]	[ps]	[%]
6	500										36	250.0	180	72.0
9	495										34	247.5	170	68.7
12	490										34	245.0	170	69.4
4	485										33	242.5	165	68.0
7											33	240.0	165	68.8
1											31	237.5	155	65.3
5											31	235.0	155	66.0
1	465			PPPPP	рррррррррр	рррррррррр	PPPPPP				31	232.5	155	66.7
18											29	230.0	145	63.0
6	455										30	227.5	150	65.9
4	450			PP	PPPPPPPPPP	PPPPPPPPP	PPPPPPP				29	225.0	145	64.4
4											28	222.5	140	62.9
5	448				ререререре	PPPPPPPPPP	PPPPPP.P				27	220.0	135	61.4
8	435				PPPPPPPPP	рррррррррр	PPPPPPP				26	217.5	130	59.8
1	430					PPPPPPPPP	PPPPPPPP				26	215.0	130	60.5
6	425				PPPPPPP	ререререре	PPPPPPPPP.			120	26	212.5	130	61.2
2	420				PPPPPPP	PPPPPPPPP	PPPPPPP				24	218.8	120	57.1
9	415						PPPPPPPPPP.			388	25	287.5	125	68.2
8	410				PPPP	рррррррррр	рррррррррр				24	205.0	120	58.5
8											24	202.5	120	59.3
10	488				PPP	PPPPPPPPPP	ppppppppp				22	200.0	110	55.0
3											23	197.5	115	58.2
8										C.C	22	195.0	110	56.4
15	385				P	PPPPPPPPPP	PPPPPPPPPPP				22	192.5	110	57.1
3											20	198.8	100	52.6
3											22	187.5	110	58.7
5											20	185.8	100	54.1
9											18	182.5	98	49.3
6							PPPPPPPPPP				17	180.0	85	47.2
14											18	177.5	98	50.7
4											16	175.0	88	45.7
7							PPPPPPPPPP				16	172.5	88	45.4
12											14	170.0	70	41.2
0											14	167.5	78	41.2
1											14	165.0	78	42.4
4											14	162.5	0	9.8
e											9	162.5	0	0.0
9										5 (S.)	8	157.5	8	0.0
2											0		0	-
7							*********				0	155.0		0.0
											8	152.5	0	0.0
57	208										9	150.0	6	0.0
		*******	******	^	A.	^		^						
		2.400NS	2.450NS	2.500NS	2.550NS	2.600N5	2.65885	2.788NS	2.750NS	2.800	1.00			

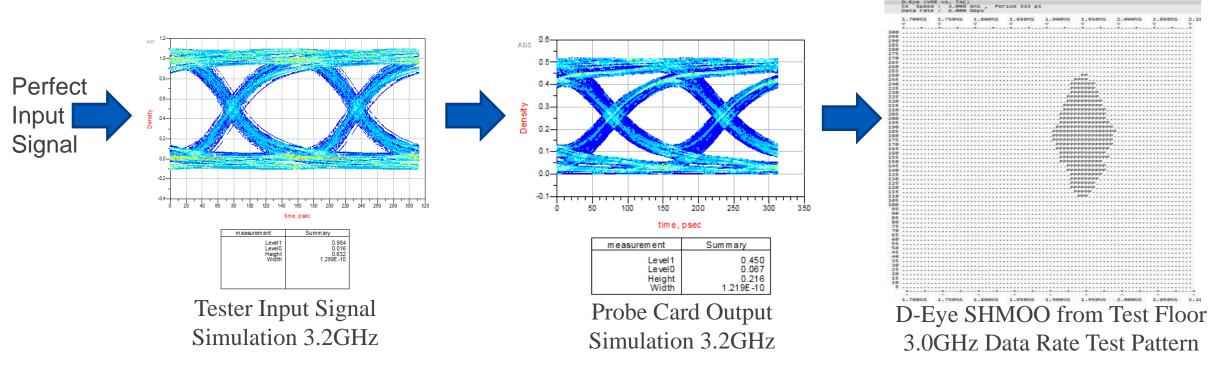
SHMOO Plot from Tester on TCK vs. TAC Pin at 105°C Test

- LPDDR4 KGD test target spec 4.266Gbps (~2.2GHz)
- Maximum test speed run up to 6.061Gbps (~3.0GHz)
- Test pattern total # of transition >1632 times
- Test pattern considered ISI (inter symbol interference)

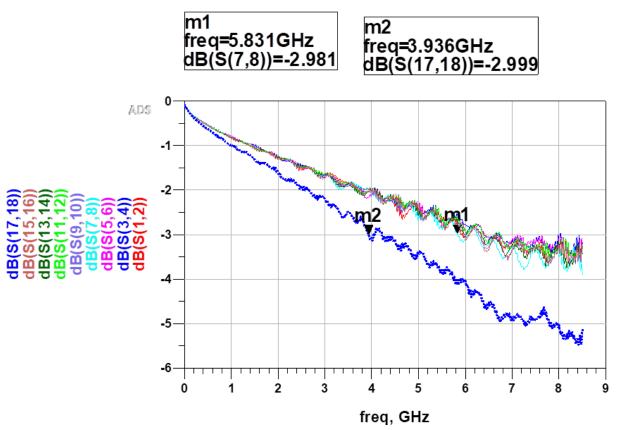
Conclusion:

- From 2GHz speed to 3 GHz speed test all patterns passed enough timing margin
- From 2GHz to 3 GHz, probe card degradation within 25ps only. Exceeds expectation.
- FFI K32 probe card proven works beyond 3GHz speed test

D-Eye (VRE_OUT vs. TAC) SHMOO Data Rate 6 Gbps and 4.266Gbps


-Eye (VRE vs. TAC) (Speed : 3.000 GHZ , Period 333 ps sta rate : 6.000 Gbps						CK Speed : 2.133 GHZ , Period 469 ps Data rate : 4.266 Gbps			
.700NS 1.750NS 1.800NS 1.850NS 1.900NS 1.950NS 2.000NS 2.050NS 2.100NS						1.700N5 1.750NS 1.800NS 1.850NS 1.900N5 1.950NS 2.000NS 2.050NS 2.100NS			
v v v v v v v	first	last	window	center	DUT.	v v v v v v v v first	last win		
++++++++	[ps]	[ps]	[ps]	[05]	151	*** [DS]	[ps] [ps] Tp	ps]
	0	6	0	0	0.0	398	9	9	6
	8	e	8	8	0.0	295	0	0	
	0	0	0	6	0.0	298	8	0	8
	8	8	e	9	0.0	285		0	
	0		.0		0.0	280	8	8	
	8		8	8	0.0	275	0	0	
					0.0	270		0	
	0		0		8.8	265	0	0	
					8.8	255	0	0	0
·····	2.15	2.155	10	2.152	6.0	250 e			
PPP P	2.14	2.155	28	2.147	12.0	245	1.89	25 1.1	.88
.ppp.ppp	2.135	2.165	35	2.15	21.0	248	1,985	58 1.8	
	2.135	2.165	35	2.15	21.0		1.915	65 1.8	
.PPP PPPP	2,135	2.17	40	2.152	24.0	238	1.915	70 1.B	
PPPP PPPP	2.13	2.17	45	2.15	27.0		1.925	88 1.8	
PPPP PPPP	2.13	2.175	50	2.152	30.0		1.925	98 1.8	
PPPPP PPPP	2.125	2.175	55	2.15	33.0	215	1.93	100 1.8	682
PPPPP PPPPP	2.125	2.18	68	2.152	36.0			105 1.8	885
PPPPPP	2.12	2.18	65	2.15	39.0	285		115 1.8	885
PPPPPP PPPPP	2.12	2.18	65	2.15	39.0	288		115 1.8	885
PPPPPP	2.32	2.185	78	2.152	42.0	195	1.94	120 1.8	882
PPPPppp	2.115	2.19	88	2.152	48.0	190		125 1.8	885
PPPPPPP	2.11	2.195	90	2.152	54.0	185	1.95	130 1.8	
PPPPPppp	2.11	2.19	85	2.15	51.0	188		148 1.8	882
PPPPPpp	2.11	2.19	85	2.15	51.0	175 PPPPPPPPPPPPPPPPPPPPPPPPPPPPP 1.815		148 1.8	8B2
PPPPPPP POPPPPP	2,115	2.19	88	2.152	48.0			145 1.8	
	2.115	2.185	75	2.15	45.0			150 1.8	
Eye-Height:	2.12	2.18	65	2.15	39,0	168		155 1.8	
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	2.12	2.185	78	2.152	42.0	155		155 1.8	
	2.12	2.175	68	2.147	36,0	158		165. 1.8	
~140mV	2.13	2.18	55	2.155	33.0	145 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP		160 1.8	
	2.13	2.18	55	2,155	33.0	140 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP		165 1.8	
***************************************	2.135	2.175	45	2.155	27.8	135		155 1.8	
PPP PPP	2.135	2.17	40	2.152	24.0	130		150 1.8	
	2.135	2.165	35	2.15	21.0			145 1.8	
	2.135	2.165	35	2.15	21.0	128		140 1.8 145 1.8	
PPI PP.	2.14	2.16	25	2.15	15.0	115		145 1.8	
	2.145	2.155	15	2.15	9,0	110		130 1.8	
		0	0		0.0			110 1.8	
			0		8.8	95		120 1.8	
					0.0			105 1.8	
				0	8.8	85	1.93	95 1.8	
	P				0.0			100 1.8	
					0.0	75	1.93	98 1.8	
	ē		2	0	8.8	70	1.92	80 1.8	
			0		0.0		1.915	78 1.8	
	8	8		P.	0.0	60 PPPPPPPP PPPP 1.855	1.91	60 1.8	
			8	8	0.0	55	1.91	55 1.8	
	e	R	R	e	8.8	50	1.9	40 1.8	
	0	0	0		0.0		1.885	28 1.8	
	0	e	e	e	0.0	40	8	0	0
	8		8		0.0	35	8	8	8
	0	e	0	8	8.8	30	8	0	8
	0	0	8	8	0.0	25	8	0	0
	8	e	e	e	0.0	20	B	0	0
	0	e.	0	0	6.8	15	0	8	e
	0	8	8	8	0.0	10	8	0	e
+++++++	Ø	0	0	9	0.0	5	0	0	0

LPDDR4 Probe Card D-Eye SHMOO Conclusion



- FFI simulation considered tester and probe card signal degradation
- Simulation considers ideal case (no crosstalk noise and power/GND noise)
- Simulation shows 43% eye height, confirmed by SHMOO plot and test floor data, performance reach 90~95% to the simulation result.
- Both simulation and actual test result show FFI K32 probe card capable for >3GHz test speed, correlate between design simulation and test result

M1: PCB design with Advanced Design Rule M2: PCB design with HFTAP K32 Design Rule

- FFI PCB Design Measurement Result Show There is Path for Probe Card Support >5GHz KGSD Test Requirement
 - Multiple signal channel PCB only simulation
 - With advanced design rule (for HFTAP K40 and K50 product)
 - Existing tester configuration
 - With PCB high speed material and manufacturing rule
 - -3dB bandwidth improve by 1.9Ghz

• HFTAP Readiness

- K32 has released to HVM
- K40 has confirmed FF internal
- Ready for up to 5.0GHz speed
- Needs ATE roadmap for >4.0GHz

Increase Test Efficiency

- Double up the parallelism with x2 signal sharing thru TTRE. Up to K16 (1.6GHz)
- Co-working with tester company for higher density channels for x256 DUT at 3.2GHz ~ 4.0GHz solutions

FFI Product Platform	FFI HFTAP Product Class	Clock (MHz)	Data Rate (Mbps)										
		8000	16000										
		7000											
		6400	12800					(GDDR	.6			
		5600	11200			GD	DR5x						
Matrix	K40	4267	8533										
IVIALITA	140	3733	7466	GD	DR5								
Matrix	K32	3200									LPDDR:	5 H	BM3
		2800				6.00							
Matrix	K22	2134				LPD	DR4x	-					
Matrix	K16	1867 1600	3733	LPDDR	4					<u> </u>		DDR	5
Matrix	K12	1339									HBM2e		
		1067						-					
Matrix	K10	933					HBN	12	JR4				
Motriy DU	K8	800	1600										
Matrix, PH	Ko	667	1333	DDR	3								
Matrix, PH	К5	534	1067										

• KGD, KGSD Test Demand Increase along with Advanced Packaging

KGSD Test Requirements Continue to Challenge Probe Card Technology

- Test speed requirement continues to increase (from 800MHz to 3.2GHz)
- KGD, KGSD test requires better test efficiency to reduce cost and support higher volume
- FormFactor HFTAP probe card now supports K32, K40 with 128 DUT (max).

Acknowledgment

- Mr. Byeongseon Ko (SK hynix): worked with FFI provided production test data
- Mr. Alan Liao (FFI): provided materials for this presentation
- Mr. Jim Tseng (FFI): provided simulation & measurement data for this presentation

Thank you

Next Generation KGD Memory Test Achieved Wafer Level Speed Beyond 3GHz/6Gbps