

Overcoming Challenges for 5G Production Tests

Taiwan, October 18-19, 2018

Overview

- What is 5G?
- Economic Impacts of 5G
- Key Challenges for 5G Production Tests
 - Handling Large Number of RF Test Channels
 - Ensuring Excellent Signal Integrity
- Possible Solutions
 - In-membrane Antenna OTA Tests
 - Dedicated Calibration Substrate & Power Calibration
- Summary
- Acknowledgements

What is 5G?

- Communication Network for 4th Industrial Revolution
 - 5G RF, Optical, High Speed Digital
- Extremely Fast Data Rates
 - 10Gbps (5G) vs 100Mbps (4G)
- Ultra Low Latency
 - 1ms (5G) vs 50ms (4G)
- Huge No. of Connections - 100 billion (5G) vs 1000 (4G)
- Higher Energy Efficiency
 - Always Stay Connected
- Connect Everyone, Everything

5G NETWORK ARCHITECTURE

1st Annual SWTest Asia | Taiwan, October 18-19, 2018 Choon Beng Sia Ph.D.

5G Use Cases

Enhanced Mobile Broadband

 Enterprise/Team Collaborations, AR/VR, Enhanced Wireless Broadband, Education, Mobile Computing, Enhanced Digital Signage.

Massive Internet of Things (MIoT)

Choon Beng Sia Ph.D.

 Smart Cities, Energy/Utility Monitoring, Asset Tracking, Smart Agriculture, Physical Infrastructure, Smart Homes, Remote Monitoring, Beacons & Connected Shoppers.

- Mission Critical Services (Low Latency Requirement)
 - Autonomous Vehicles, Remote Patient monitoring/TeleHealth, Industrial Automation, Smart Grid, Drones.
 - 4G braking command makes a car at 100kmph to stop after 1.4m.
 - 5G Same car stops within 2.8cm due to ultra low latency.

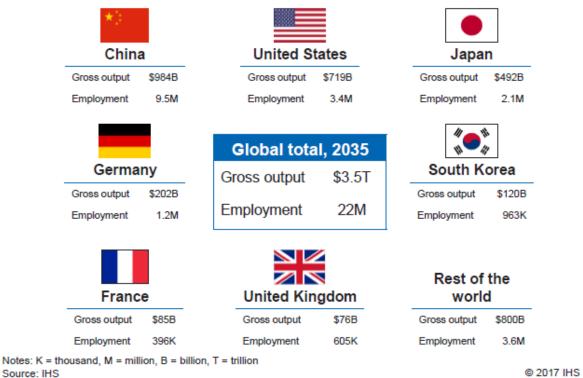
1st Annual SWTest Asia | Taiwan, October 18-19, 2018

Source: The 5G Economy: How 5G Technology will contribute to the Global Economy, Jan 2017 for Qualcomm https://www.independent.ie/business/technology/news/the-need-for-speed-is-ireland-ready-for-5g-the-next-big-thing-in-cellular-technology-36629260.html

Economic Impacts of 5G (USA)

- 5G \rightarrow 3 million jobs, US\$275B investments, US\$500B economic growth
- Smart Cities
 - US\$160B in savings \downarrow Energy Use & \downarrow Congestion.
 - Eg. Sensors monitor Health & Safety of critical infrastructure Buildings, Roads & Bridges.

Transportation


- Self-driving cars \downarrow 90% emissions, \downarrow 40% Travel Time & Save 22,000 lives annually.
- 5G will save US\$450B annually in transportation costs.

Healthcare

- Remote Patient Monitoring & Surgery through connected healthcare devices
- US\$305B in Healthcare Cost-savings Annually.
- Energy
 - 5G allow Energy Grid to be more Accurately Monitored, Improving Management, Reducing Costs, adding US\$1.8 trillion in revenue to the U.S. economy.

Economic Impacts of 5G (World)

Global 5G value chain output and employment in 2035

- By 2035, Value Chain US\$3.5T, 20M Jobs •
- **CEO Qualcomm, "5G Impact similar to** • Introduction of Electricity or Automobile" 1st Annual SWTest Asia | Taiwan, October 18-19, 2018

Mobile Critical Industry Internet of output Broadband Things Services

Enhanced

2016 US\$ billions

5G will enable \$12 trillion of global economic activity in 2035

Massive

Mission

5G-enabled

Percent of

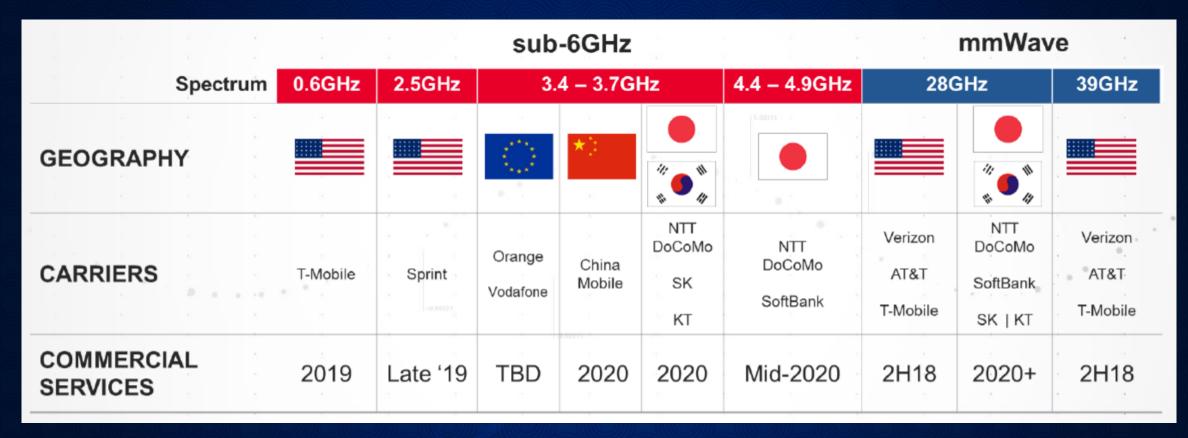
Choon Beng Sia Ph.D.

Source: Prepared by IHS, The 5G Economy: How 5G Technology will contribute to the Global Economy, Jan 2017 for Qualcomm Inc.

Global Race to 5G

- 5G Readiness Index
 - Spectrum Availability
 - Infrastructure Planning
- CTIA, consortium representing U.S. **Wireless Communications** Industry
 - 250 companies

Choon Beng Sia Ph.D.


1st Annual SWTest Asia | Taiwan, October 18-19, 2018

10th

C:

5G Readiness Index

Global Race to 5G



- 2020 appears to be commercialization target for 5G
- Focus on Sub-6GHz, Expect Challenges in mmW Tests

Choon Beng Sia Ph.D. 1st Annual SWTest Asia | Taiwan, October 18-19, 2018

Source:- Keysight World 5G Presentation, Shanghai June 2018

5G Field Trials

Russia will stream the World Cup in VR with 5G Image: Share in the image: Share i

 Intel & NTT Docomo 5G Trial at Japan 2020 Summer Olympics:

8k 360 degree video streams

- 5, 24-28, 37-40, 64-71 GHz Proposed

6

The Tokyo games will be awash in 5G.

Devindra Hardawar, @devindra 02.25.18 in Internet

nts

362

Shares

Choon Beng Sia Ph.D.

Requirements for 5G Production Tests

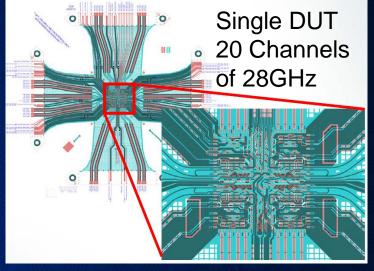
New Test Equipment Needed

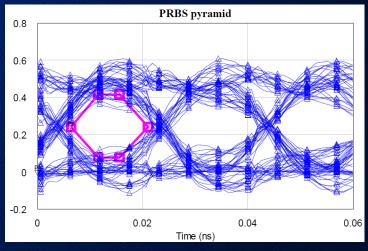
- Higher Test Frequencies (> than most ATE testers can handle)
- Very Large Number of Channels

Short Time of Test with High Throughput

Parallel test (multi-site)

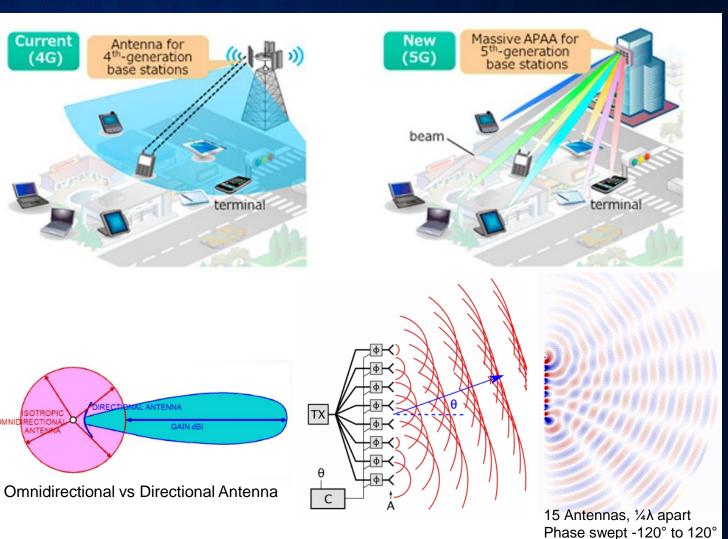
High Accuracy is needed to Validate Performance


- Good Signal Integrity at high RF frequency
- Prevent packaging bad devices due to yield


Key Challenges in 5G Production Tests

- 1. Handling Very Large Number of RF Test Channels
 - Parallel Tests require even larger no. of Channels in RF Tester = \$\$\$\$
 - Challenges in Routing RF Channels in Parallel Test setup (X8 DUT, >160 Channels, >25GHz)

2. Ensuring Excellent Signal Integrity

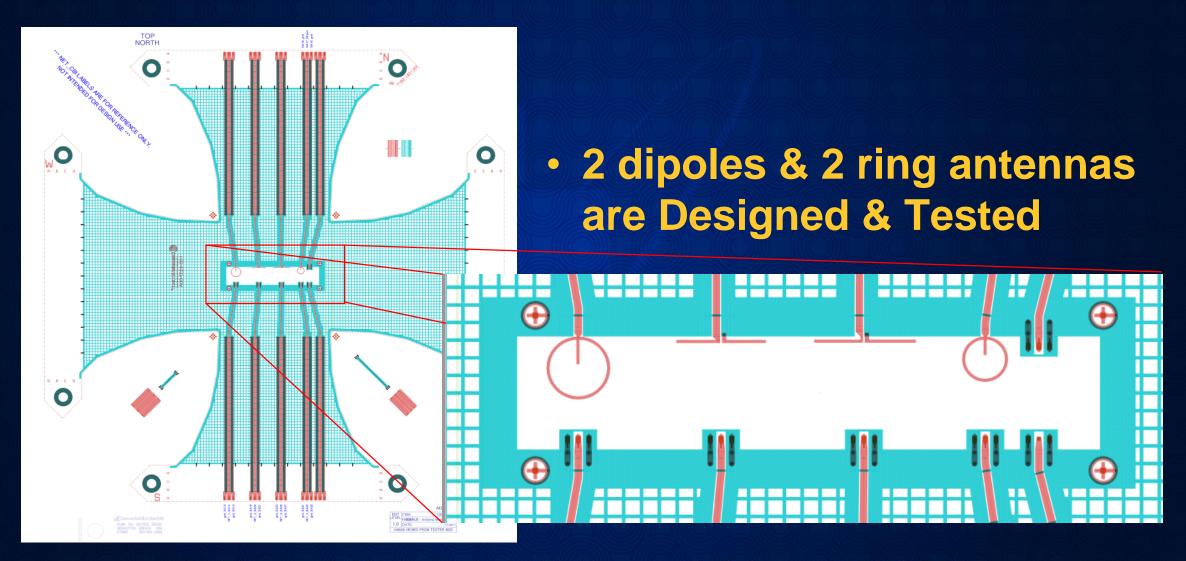

- Post-Calibration Verifications & Use of Dedicated Calibration Standards Substrates.
- Maintaining Calibrated State for as long as possible (esp. with Frequency Extenders).
 - Throughput impact if frequent recal. needed.

1. Handling Very Large Number of RF Test Channels

- 5G is using higher freq.
- Larger Attenuation at Higher Frequencies.
 - Omnidirectional Antenna cannot support
- Directional Antenna needed
 - Active Phased Arrays & Beamforming
 - Up to 64 lines at 70 GHz in a single device
- Massive MIMO with Active Phased Array Antennas for 5G.

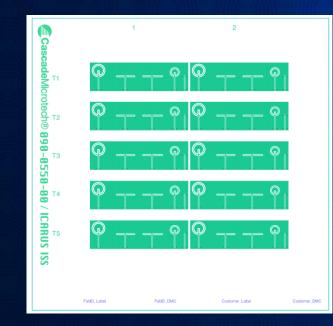
Choon Beng Sia Ph.D.

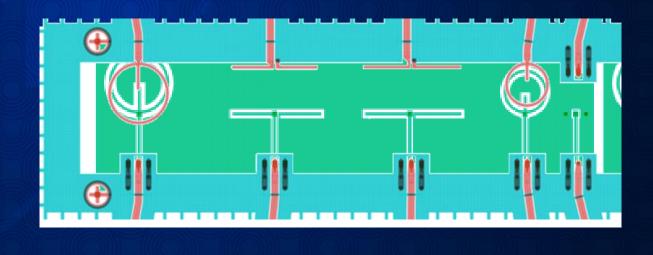
https://en.wikipedia.org/wiki/Phased_array


1st Annual SWTest Asia | Taiwan, October 18-19, 2018

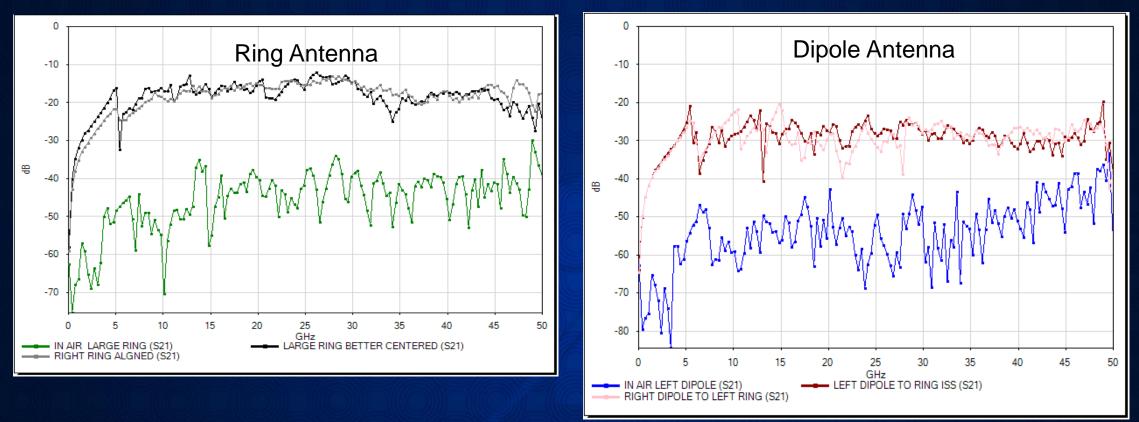
https://www.mitsubishielectric.com/en/about/rd/research/highlights/communications/5g.html

1. Handling Very Large Number of RF Test Channels


Test Method		Advantages	Disadvantages
Full Channel		 Full RF Coverage Fast 	 Expensive Tester Routing/Space Transformation Difficulties
Balun, Switches, Combiners		 Established Methods 	 Discrete Components – High Loss, Large & Bulky On-ProbeCard – Narrowband & High Loss
Antenna Coupling		 Reduce Channel Count (4:1 combining) 	 Loss than Conducted Tests Space needed for Antenna


Membrane Probe Head & Antenna Test Structures

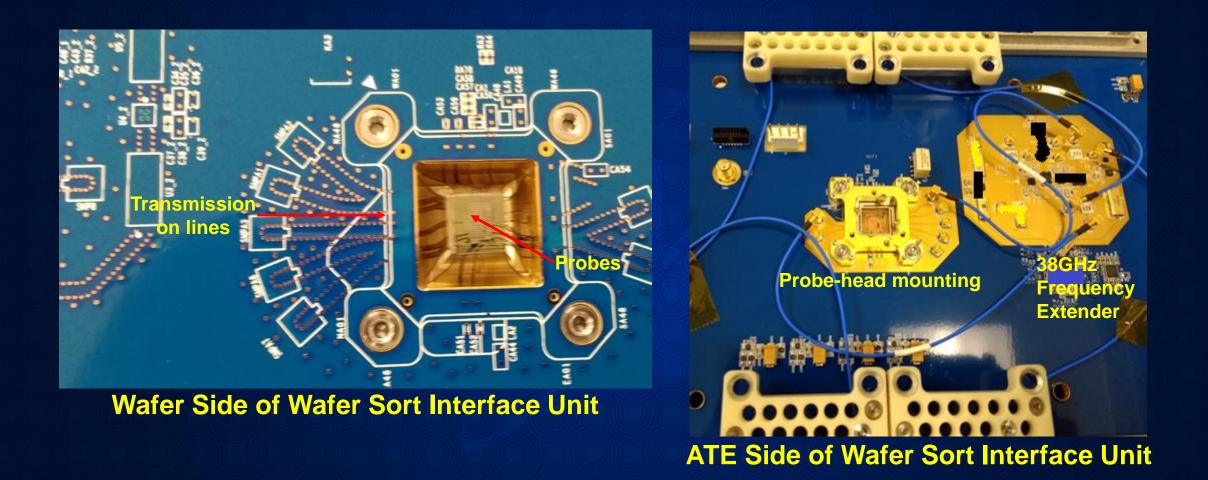
Ceramic Substrate for Reception Tests


- A substrate was fabricated for reception of the signals.
- Signal goes back to the probe head (membrane) through GSG tips.

1st Annual SWTest Asia | Taiwan, October 18-19, 2018

Insertion Loss for Ring & Dipole Antenna

- Insertion Losses higher than noise by about 20dB.
- Wide bandwidth observed due to near field coupling (>100µm).
- Ring Antenna has better performance than Dipole Antenna.


Intel's ATE mmW Test Setup

- Advantest 93000 PSRF ATE System
 - generates 6 GHz for device testing
- SIU PCB (Wafer Sort Interface Unit)
 - mmW Frequency Extender developed using off-the-shelf components.
 - Up-converts RF Test Signal from the ATE \rightarrow 38 GHz CW signal.
 - Down-converts 38 GHz RF signal from the DUT to a signal manageable within the measurement range of the ATE (< 6GHz)

1st Annual SWTest Asia | Taiwan, October 18-19, 2018

Intel's ATE mmW Tests – Membrane Probe Head

1st Annual SWTest Asia | Taiwan, October 18-19, 2018

SW Test Workshop, June 3-6 2018, USA

Intel's ATE mmW Test – Test Setup

Two antenna bumps with

 $\frac{1}{4}$ -wave antennas

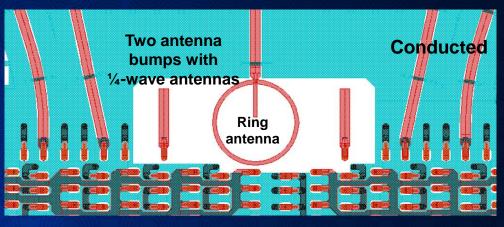
Ring antenna

Solder Ball

Fully Conducted Test

Electrical contact

- ¼ wave Antenna Transmitting to Ring Antenna
 - ¼ wave makes contact with solder ball and then transmits to ring antenna
- Solder Ball Transmit to Ring Antenna



Conducted

Intel's ATE mmW Test – Results

Probe	Transmit Power from Same DIE (dBm)		
touchdown	1/4λ to Ring Antenna	Ring Antenna only	Fully Conducted Path
1	-63.27	-86.67	-38.593
2	-63.169	-85.95	-38.594
3	-63.8	-86.68	-38.588
4	-63.825	-86.62	-38.589
5	-63.636	-85.63	-38.59
6	-63.687	-85.51	-38.597
7	-63.793	-86.62	-38.602
8	-64.043	-86.23	-38.61
9	-64.728	-85.14	-38.616
10	-64.673	-85.98	-38.615
11	-64.955	-86.69	-38.634
12	-64.866	-85.43	-38.649
13	-65.111	-85.95	-38.648
14	-65.785	-84.65	-38.698
15	-65.826	-84.25	-38.711
16	-65.854	-84.13	-38.757
17	-65.748	-84.32	-38.762
18	-65.831	-84.61	-38.766
19	-65.696	-84.21	-38.753
20	-65.692	-84.74	-38.778


mm Wave Probe Connection: 2 to 1 combining with ¼-wave antennas

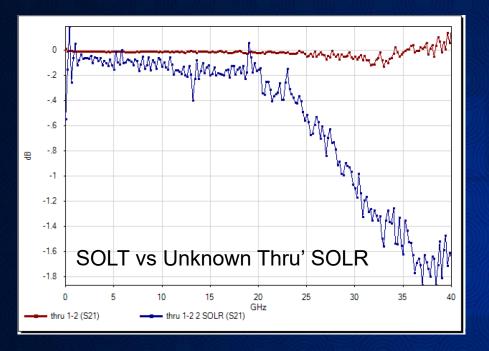
Very Repeatable Measurements at 38.56 GHz

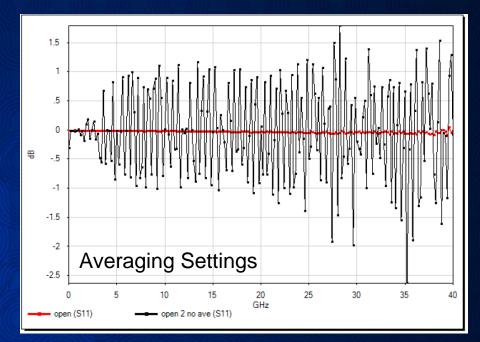
1st Annual SWTest Asia | Taiwan, October 18-19, 2018

Intel's ATE mmW Test – Results

Spectrum measured with the ¼-antenna

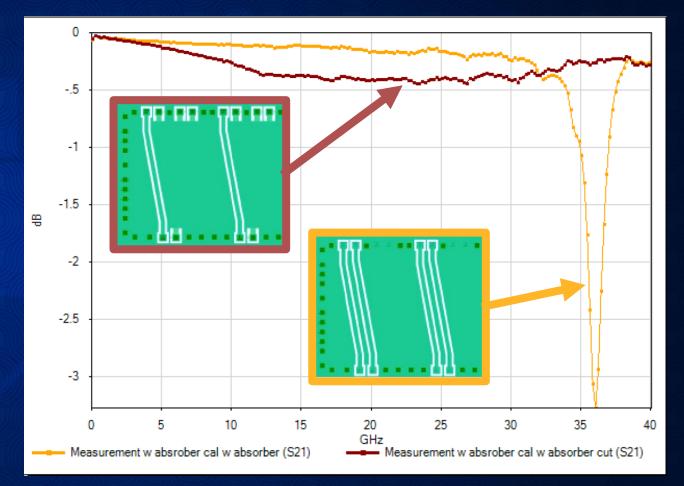
Choon Beng Sia Ph.D.


- Multi-tone Spectra at 38 GHz using an IQ waveform (modulated signal)

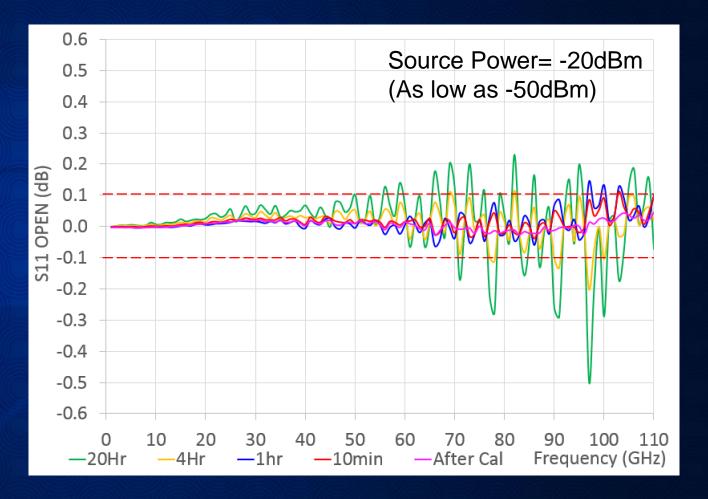

In-membrane Antennas is feasible for 5G Production Tests.

1st Annual SWTest Asia | Taiwan, October 18-19, 2018

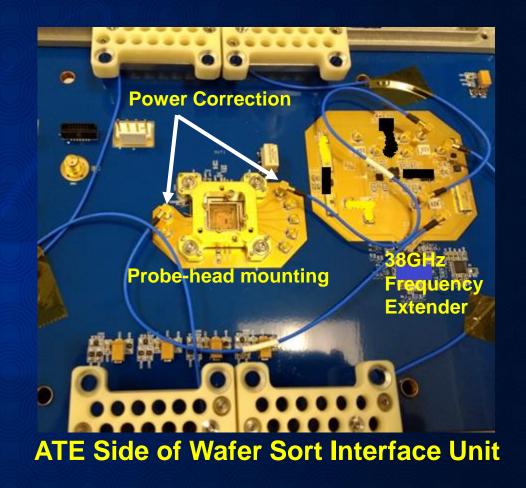
2. Ensuring Excellent Signal Integrity



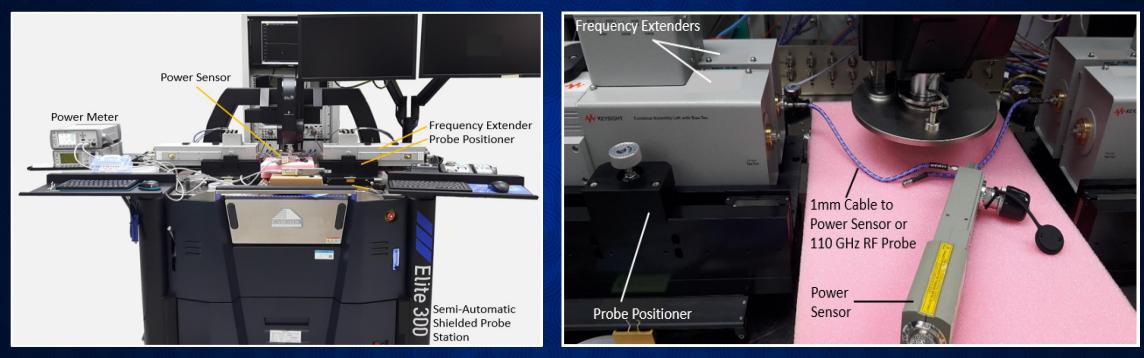
- Post-Calibration Verification Checks are strongly recommended
- It is the only way to reveal Calibration Anomalies
 - SOLT vs SOLR on thru', SOLT appears better
 - Open check with Gain (Optimize with IFBW settings)


Dedicated Calibration Standards

- Dedicated Calibration
 Substrates for 5G
 - Higher Test Frequencies
- Narrow Pitch GSSG Layout
 - Results in 36 GHz resonance for Thru' standards.
 - Calibration fail at 36 GHz.
 - Adjacent thru' removed improves calibration performance.
- Experience & Know-How are Critical.


Post-Calibration System Stability

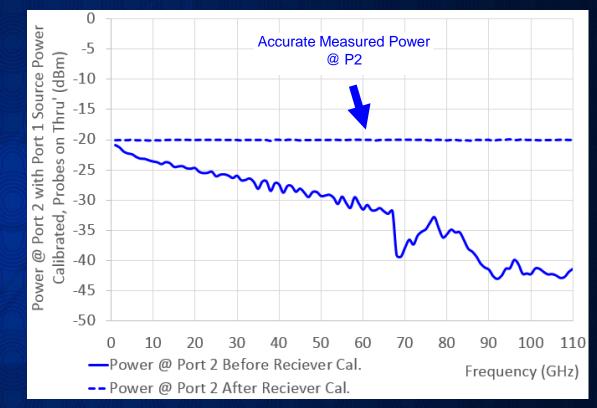
- As Freq ↑, System Post-Calibration Stability↓.
- Worse off when Freq. Extenders are used.
- Eg (67-110 GHz Extender)
 - Open is a Convenient Check.
 - Open After Cal. (< ±0.1 dB).
 - 110 GHz 10 minutes
 - 90 GHz 60 minutes
 - 70 GHz 4 hours
 - Re-calibration is required & Throughput ↓.



Power Calibration with Frequency Extenders

- Power Cal. not perform on Intel Test Results but if ATE supports...
- Source Power Cal.
 - Characterize Actual Source Power after Frequency Extenders with Power Meter.
 - Account for the Losses of Probecard.
 - Perform Source Power Correction from instrument to probe tips.
- Receiver Power Cal.
 - Put Probe Head on Thru' Standard.
 - Perform Receiver power Correction to Probe Tips.

Power Calibration with Frequency Extenders


110 GHz Engineering Setup for 5G Device Characterization

1st Annual SWTest Asia | Taiwan, October 18-19, 2018

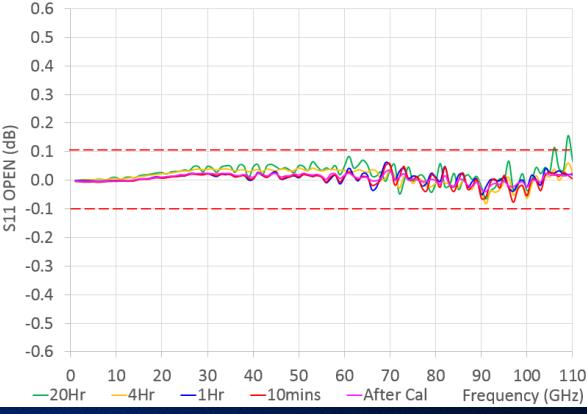
Power Calibration with Frequency Extenders Source Power @ Tips Measured Power @ P2 Receiver

0 -5 (dBm) -10 -15 **RF Source power** Consistent Probe . -20 Port 1 -25 ® -30 Power -32 -40 50 Ω 10 30 60 100 110 —Power @ Port 1 Probe Tips Before Source Power Cal Frequency (GHz) -- Power @ Port 1 Probe Tips After Source Power Cal

- Before Cal. Loss ↑ with freq. & freq. extender Influence power settings.
- After Cal. Consistent Source Power.


- Before Cal. Huge Losses at Receiver
- After Cal. Consistent Power of -20 dBm regardless of freq.

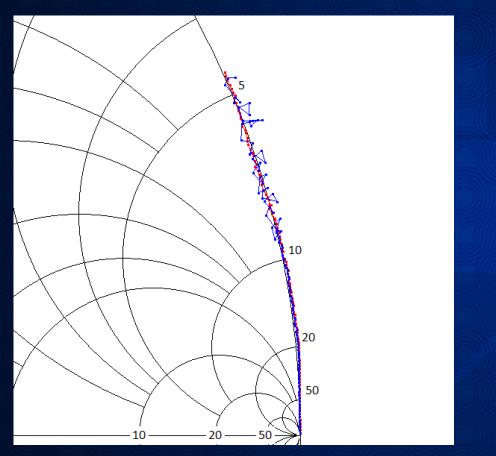
1st Annual SWTest Asia | Taiwan, October 18-19, 2018

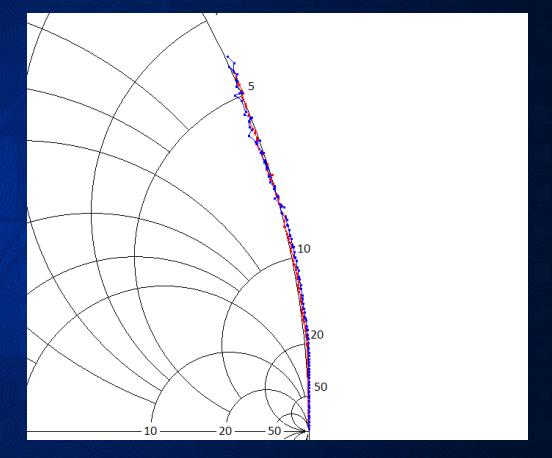

Improved Post-Calibration Stability

S-parameters Calibration

S-parameters+Power Calibration

110 GHz – 10 minutes 90 GHz – 60 minutes 70 GHz – 4 hours


110 GHz - >4 Hours 90 GHz - >20 Hours 70 GHz - >20 Hours


1st Annual SWTest Asia | Taiwan, October 18-19, 2018

Improved Post-Calibration Stability

S-parameters Calibration

S-parameters+Power Calibration

110 GHz Cal. Valid for only 10 mins110 GHz Cal. Valid for 4 hoursChoon Beng Sia Ph.D.1st Annual SWTest Asia | Taiwan, October 18-19, 2018

Summary

- What is 5G and its Impacts.
- Identify 2 Key Challenges for 5G Wafer-Level Tests.
 - Handling Large RF Channels ; Ensuring Excellent Signal Integrity
- In-membrane Antennas is feasible for 5G Production Tests.
 - Reduce RF channels without expensive tester upgrades
 - Good signal integrity that will support 5G production test
 - More designs are now being experimented at Intel

Excellent Signal Integrity is Critical for Accurate 5G Tests.

- Strongly Recommend Dedicated Calibration Substrates & Post-cal. Verifications.
- Periodic System Stability Checks are Essential.
 - Power Calibration improves Stability Performance & Test Throughput.

Acknowledgements

Colleagues at FormFactor USA

– Dr Daniel Bock

- Amy Leong, Chief Marketing Officer

Colleagues at Intel

 Michael Engelhardt, Michael Hemena, Robert Murphy and Balbir Singh