Objective

Particulate contamination can build up on the probe face and tips during probing, resulting in damage and poor performance. This guide describes the recommended online cleaning methods for Pyramid Probes with a steel plunger stack, for example, the P800-S when probing solder balls.

Contaminants

Contaminants on Pyramid Probes can be divided into two general classes:
- Particulate Contaminants
- Perform regular preventative maintenance to clean the wafer area of the prober

Particulate Contaminants

Particulate contamination can build up on the probe face and tips during probing. In some cases, particulate contamination may go unnoticed by the user, while in others it can cause persistent open channels. Though unlikely in solder ball probing applications, large, hard particles can crush probe tips and are a leading cause of premature, catastrophic probe card failure.

Once particles have been transferred to the membrane, they are best removed by using the offline cleaning brush supplied with your core. See the Pyramid Probe Cores Offline Cleaning With Brush Quick Reference Guide for details.

The best solution for particulate contamination, however, is removal of the particles at their source. A few simple precautions can protect Pyramid Probes from particulate damage. To avoid accidental damage to the probe core:
- Probe in a clean room environment

Pyramid Probe Card: P800-S Online Cleaning

- Wash wafers immediately before probing (particularly after laser scribe operations)
- Use extreme caution when probing correlation wafers.
- Do not load or unload probe cards with the wafer on the chuck.
- Do not share brushes between Pyramid Probes and other probe card technologies
- Do not probe wafers that have been stored in an unclean environment
- Do not touch the membrane, even with gloved hands
- Perform regular preventative maintenance to clean the wafer area of the prober

Resistive Buildup Contaminants From Solder

Resistive buildup contaminants such as organics and oxides can accumulate on the probe tips during probing. To maintain high yield, these contaminants must be removed by abrasive cleaning. For best results, preventive measures should be taken to remove this contamination. Resistive buildup contaminants do not usually damage probe tips directly, but can result in increased contact resistance. To compensate, users may choose to increase overtravel, which can stress probe tips and cause premature probe failure.

Probe tips for solder ball probing are much more susceptible to accumulation of resistive buildup contaminants. Under normal probing, the soft solder material sticks to the probe tip surface. This buildup typically appears as a dark colored mass that covers the entire tip surface and occurs with all types of solder alloys. Often, the mass will include areas that are green, blue, brown, or black. Yield will suffer if this buildup is not removed preemptively with aggressive online cleaning.

Clean probe tip

Solder buildup

Online Cleaning Materials

CAUTION

Excessive use of abrasive substrates may cause premature failure of Pyramid Probes.

The most effective method for controlling contact resistance (Rc) and cleaning resistive buildup from Pyramid Probe tips is online cleaning by touching down on an abrasive. Abrasive cleaning media can be divided into four categories:

- Abrasive coated foams
- Abrasive loaded elastomers
- Lapping films
- Soft backed lapping films

The only recommended media for cleaning the P800-S is an abrasive coated foam.
Recommended

Abrasive coated foams

The most common source for abrasive coated foams is MIPOX International. Abrasive coated foams consist of a layer of abrasive particles in a resin binder. Instead of being bonded to a polyester film carrier like a lapping film, the particles are coated onto a soft, open celled foam. Abrasive coated foams are the only recommended cleaning media for P800-S type Pyramid Probes.

![Abrasive coated foam architecture](Image)

Acceptable

Abrasive loaded elastomers

Abrasive loaded elastomer media consist of a relatively thick layer of elastomer (such as silicone, polyurethane, or rubber) with abrasive particles mixed evenly throughout the polymer. This gel-like film is generally mounted to a polyester backing film or a cleaning wafer. The most common source of this type of cleaning film is International Test Solutions (ITS). Abrasive loaded elastomers are expected to be safe for use.

Unacceptable

Lapping films

Lapping films are the traditional method used for cleaning cantilever probe cards. Lapping film contains abrasive particles that have been bonded to the backing film with a relatively hard resin binder. These films are typically 75-125 μm thick.

Soft backed lapping films

Using soft backed lapping films applies uneven pressure on the probe tips causing uneven wear, reducing coplanarity, especially at the edges or corners of an array of tips, and increasing the overtravel requirement over time. In addition, too much overtravel is required to make contact with all the probe tips. This type of cleaning material should not be used to clean Pyramid Probes.

Examples of soft backed lapping films include:
- MIPOX PF3 types, for example, GC6000-PF3 and GC8000-PF3, SI10000-PF3
- 3M Type CL (cushion layer)
- Stacked layers of cleaning films to create the equivalent of a soft backed lapping film

Other

A number of probe cleaning methods common within the industry can cause irreversible damage to Pyramid Probe cards. These methods must not be used with Pyramid Probe cards under any circumstances:
- Tungsten Carbide, Silicon Carbide, Alumina or other Ceramic Plates – even if they are similar to the Allied 3 μm diamond lapping film in grit size, probing on these surfaces will quickly grind away Pyramid Probe tips.
- Non-qualified chemicals – many chemicals are incompatible with the materials used in Pyramid Probe cores. See the Pyramid Probe Core Offline Cleaning With Brush Quick Reference Guide for a list of qualified chemicals.
- Lapping Films with the abrasive contained in ceramic beads – the large ceramic beads can damage the probe tips. The beads are also brittle and can shatter, causing contamination on the face of the probe. This type of cleaning material should not be used to clean Pyramid Probes. Examples of lapping films with ceramic beads containing abrasive include:
 - Allied High Tech Products, Type B lapping films
 - 3M Type B lapping films
Online Cleaning Parameters

General Precautions

When using a prober or cleaning station, never clean Pyramid Probe cards by moving the cleaning chuck back and forth in the XY plane when it is in contact with the probe tips. Instead, clean the probe tips contacting the cleaning substrate using only a Z axis motion. Many probers and probe card analyzers default to a scrubbing XY motion, which must be disabled.

When stepping Pyramid Probe cards down on a cleaning substrate, do not exceed 250 μm in overtravel. Overtravel between 35 and 75 μm is optimal for most cleaning applications. Higher overtravel is more likely to generate particles from the cleaning film.

Step the cleaning chuck at least 2x the tip diameter in the X and Y directions between touchdowns to ensure the probe tips always contact fresh material and an even distribution of abrasive particles.

Cleaning Pyramid Probe cards by contacting a cleaning substrate takes multiple touchdowns to achieve good results. A ratio of 2.5 probing cycles to the number of cleaning cycles is expected. Experiment to find the cleaning count that works best in your environment. Eighty cleaning contacts for 200 touchdowns is a good number to start.

Online Cleaning Frequency – Yield vs. Wear

Each time a probe card is cleaned abrasively, a small amount of probe tip material may be removed in addition to the contaminant. When developing a cleaning strategy for probe cards, a trade off is made between the lifetime of the probe card and the test yield. Yield suffers if the probing-to-cleaning ratio is set too high. Alternatively, probe card lifetime and test equipment utilization suffer if the probing-to-cleaning ratio is set too low. When developing the cleaning strategy, the objective is to determine a probing-to-cleaning ratio low enough to minimize probe tip wear, but high enough to maximize yield.

Overtravel

If all the tips are in contact, increasing cleaning overtravel on Pyramid Probe tips does not increase the foreign material removal rate. In fact, higher cleaning overtravel may accelerate the accumulation of particles from the cleaning substrate. The tips on a Pyramid Probe range from 20-55 μm tall. The foam on abrasive coated foams is soft, enabling the probe tips to push into it relatively easily. Therefore, increasing overtravel values far beyond the tip length does not increase the cleaning action because the tips are buried and the probe face is simply compressing the foam.

Set the overtravel high enough to ensure that all tips contact the film, but low enough to minimize particle generation from the film. Typical cleaning overtravel used in the factory environment is 35 to 75 μm.

Cleaning Recipe, Initial Settings

Experiments were performed in the factory on solder covered wafers to establish a cleaning recipe to use as a starting point for customers probing solder balls with P800-S Pyramid Probes. Contact resistance was monitored while the number of cleaning touches was varied. Cleaning cycles were made after every 200 contact resistance measurements. A ratio of probing contacts to cleaning contacts was calculated for each recipe. The tested ratios were 1:1, 2.5:1, 5:1, and 10:1. The results showed that the highest ratio of probing to cleaning that maintained less than 0.5 ohms increase in contact
resistance was 2.5:1; or 80 cleaning cycles for every 200 measurements. A cleaning recipe can be created using the process described in this document, or by starting with these values and refining them based on yield.

<table>
<thead>
<tr>
<th>Die between cleaning cycles</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning TD per cycle</td>
<td>80</td>
</tr>
<tr>
<td>Cleaning overtravel</td>
<td>50 μm</td>
</tr>
<tr>
<td>Cleaning material</td>
<td>MIPOX WA6000-SWE</td>
</tr>
</tbody>
</table>

Procedure: Determining Cleaning Parameters

1. Ensure that the proper cleaning medium is installed on the cleaning chuck or wafer.
2. Verify that the prober is set for the correct height offset or will detect the height of the cleaning surface optically.
 - MIPOX International’s WA6000-SWE film thickness varies from 470 to 500 μm.
3. Examine the probe tips under a microscope. Magnification levels of 500 to 1000x and bright field lighting are optimal. Probe tips should be free of debris. Typical probe tip dimensions are:
 - 11 μm nominal for Sn-capped copper pillars (<100 um diameter)
 - 18 μm nominal for solder balls and Sn-capped copper pillars (>100 um diameter)
4. After probe card inspection, load the probe card onto the prober.
5. Verify the prober cleaning settings.
 - Cleaning type set to Z only
 - The XY increment between cleaning touchdowns is at least 2 times the tip diameter
6. Select the initial cleaning overtravel, typically 35 to 75 μm (50 μm is recommended).
7. Determine the cleaning interval.
 a. Probe until a yield drop occurs.
 b. Clean the probe tips well, with 150-200 cleaning cycles.
 c. Repeat step a and step b until you can predict the number of die probed before a yield drop.
 d. Set the cleaning interval to approximately 75% or 80% of the average number of touchdowns before yield drops.
8. Determine the number of touchdowns per cleaning cycle.
 a. Choose an initial value. Traditionally, this has been a small number like 25 to 30. Recent experiments show that more cleaning touchdowns may increase the number of die between cleaning. Consider starting with 150 to 200 cleaning touchdowns, especially for solder ball probing.
 b. Probe several cleaning cycles to validate a stable process.

CAUTION

Difficulty autofocusing on the probe tips can cause a discrepancy between actual and programmed overtravel, leading to poor cleaning performance.

NOTE

The cleaning parameters described here are guidelines only. Optimized cleaning parameters for the best yield and lifetime must be developed in your unique probing environment.

CAUTION

Difficulty auto focusing on the probe tips can cause actual and programmed overtravel to be different. This can lead to poor cleaning performance.
c. Reduce the number of cleaning touchdowns by about 20%.
d. Repeat step b and step c until the yield can not be maintained for the entire probing cycle.
e. Increase the number of cleaning touchdowns to the previous larger number.

9. Remove the probe card and examine the probe tips under a microscope for signs of contamination buildup. See Contaminants on page 1 for information on contamination types.

Troubleshooting

Troubleshooting your cleaning process depends on the device yield, and the type and amount of contamination found. After setting the initial parameters, allow the system to run for a period, perhaps 10 probing/cleaning cycles. When you have collected enough data to spot trends, review the device yield.

• If the yield decreases over time, varies cyclically with the cleaning interval, or is lower than expected, refer to the table below to increase the cleaning efficiency.
• If the yield is stable and acceptable, consider reducing the cleaning touchdowns per cycle or increasing the interval between cleanings to verify the settings and optimize the process.

<table>
<thead>
<tr>
<th>Issue</th>
<th>Possible Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contamination on tips:</td>
<td></td>
</tr>
<tr>
<td>• Metal</td>
<td>• Run cleaning cycle 1 or 2 times (100-200 touchdowns)</td>
</tr>
<tr>
<td>• Organic</td>
<td>• Check probe tip height</td>
</tr>
<tr>
<td>• Oxide</td>
<td>• Check cleaning media height and planarity</td>
</tr>
<tr>
<td>• Or yield does not recover after cleaning</td>
<td>• Check XY step between cleaning touchdowns</td>
</tr>
<tr>
<td></td>
<td>• Visually inspect probe marks on cleaning media</td>
</tr>
<tr>
<td></td>
<td>• Increase cleaning overtravel if contamination limited to some areas of probe</td>
</tr>
<tr>
<td></td>
<td>• Increase touchdowns per cleaning</td>
</tr>
<tr>
<td></td>
<td>• Decrease cleaning interval</td>
</tr>
<tr>
<td></td>
<td>• Monitor yield closely</td>
</tr>
<tr>
<td>Yield drops off between cleanings</td>
<td>• Decrease cleaning interval</td>
</tr>
<tr>
<td></td>
<td>• Double Z touchdown</td>
</tr>
<tr>
<td>Particles around the tips</td>
<td>• Brush clean</td>
</tr>
<tr>
<td></td>
<td>• Reduce cleaning overtravel</td>
</tr>
<tr>
<td></td>
<td>• Clean cleaning media</td>
</tr>
<tr>
<td>Abrasion on membrane (see Figure 4. on page 7)</td>
<td>• Change to a different type of cleaning media</td>
</tr>
<tr>
<td>Repeating indents on probe face (see Figure 5 on page 7)</td>
<td>• Reduce cleaning overtravel</td>
</tr>
<tr>
<td></td>
<td>• Check probe tip height</td>
</tr>
<tr>
<td></td>
<td>• Check cleaning medium height and planarity</td>
</tr>
<tr>
<td>Repeating particle indent, near miss</td>
<td>• Clean cleaning media</td>
</tr>
<tr>
<td></td>
<td>• Change cleaning media</td>
</tr>
</tbody>
</table>
Pyramid Probe Card: P800-S Online Cleaning

<table>
<thead>
<tr>
<th>Issue</th>
<th>Possible Actions</th>
</tr>
</thead>
</table>
| None | • Return to service
| | • Increase cleaning interval
| | • Reduce touchdowns per cleaning |

Recommended Offline Cleaning Methods and Materials

Brush Cleaning

For a complete brush cleaning procedure, refer to *Pyramid Probe Core Offline Cleaning With a Brush Quick Reference Guide*.

Abrasive Cleaning

CAUTION

Offline abrasive cleaning can reduce the lifetime of your Pyramid Probe card. Use this procedure only after other possibilities have been exhausted.

Extreme resistive buildup contamination can be removed by abrasively cleaning the probe tips. This cleaning process is identical to the online process described above, except that the number of touchdowns is higher.

In most cases resistive tips can be cleaned up with only 150-200 touchdowns on the cleaning film. However, sometimes more aggressive cleaning is required. In these instances, up to 1000 touchdowns may be necessary to remove the contamination. Accumulation of contamination this tenacious usually indicates other problems in the probing environment. High current, residue on bond pads, insufficient online cleaning, and hot probing (making or breaking contact with power applied) can all contribute to abnormal accumulation of resistive films on Pyramid Probe tips.

Service

To remove the most severe contamination, return the probe card to FormFactor for cleaning. Before shipping a part to FormFactor, obtain a Return Material Authorization number (RMA #). Contact FormFactor customer service at (800) 550-3279 or (503) 601-1000.

© Copyright 2019 FormFactor, Inc. All rights reserved. No part of this document may be reproduced, transmitted or displayed in any form or by any means except as duly authorized by FormFactor, Inc. FormFactor and the FormFactor logo are trademarks of FormFactor, Inc. All other trademarks are the property of their respective owners.

Important Notice

While the information contained herein is believed to be accurate as of the date hereof, no express or implied representations or warranties are made with respect to its accuracy or completeness. FormFactor, Inc., and its subsidiaries disclaim liability for any inaccuracies or omissions. All information is subject to change without notice.

Users are required to read and follow carefully all safety, compliance and use instructions. Users assume all loss and liability arising from the use of products in any manner not expressly authorized. The conditions and methods of use of products and information referred to herein are the entire responsibility of the user and, to the maximum extent permitted by applicable law, FormFactor, Inc., and its subsidiaries shall not be liable for any damages, losses, costs or expenses arising out of, or related to, the use thereof.

No license, express or implied, by estoppel or otherwise, under any intellectual property right is granted in connection herewith. Users shall take all actions required to avoid intellectual property infringement.

Corporate Headquarters
7005 Southfront Road
Livermore, CA 94551
Phone: 925-290-4000
www.formfactor.com