

ACTOR

WSF-10

Scaling Measurement Methodologies Using Cryogenic TaaS Framework for Higher Quality cryo-LNAs and Reliable Qubit Readout Chains

¹ Brandon Boiko, ² Eric Zhang, ³ Doug Jorgesen, ² Sebastian Engelmann, ² Curtis Grosskopf, ² Ryan Paske

¹ FormFactor Inc., ² IBM Quantum, ³ Marki Microwave

0

- Quantum Market and Supply Chain
- TaaS Framework
- Measurement Setup
- Methodology
- Results
- Next Steps

Quantum Market Overview

2

- The quantum computing market is rapidly scaling
- Approaching 1000+ qubit processors by the end of the year
- Each qubit requires ultra low noise environments

Supply Chain Challenges

- New products require multiple design-fab-test cycles
- Cryogenic Systems are a major capital investment

WSF-10

RF and Cryogenic engineering are highly specialized fields

A Need to Scale

- Typical readout chain has two levels of amplification
- Each read out line supports around 5 qubits
- About 200 chains to support 1000+ qubits in 2023
- About 20,000 to support 100,000+ qubits by 2026+

4

Developments in Cryogenics

• Closed loop or "Dry" fridges eliminate the use of LHe

WSF-10

- Standardized products rather than custom one-off builds
- Load-locks to rapidly cycle samples rather than the system

Why TaaS?

- Large costs make investment too risky for a young market
- Centralized location would be more accessible

WSF-10

• Total cost to industry would be reduced

TaaS Development Framework

Test House

Routine / standardized testing service Physical / cryo infrastructure for testing Skills to design and facilitate the test

Component Manufacturer

Provides know-how to test components Provides physical components for test

Test Cases & Pilot

Collaborative effort from all parties to develop initial test methods and expertise to design the test

Academic Partner

Collaboration for learning, problem and failure analysis, experimentation, test and protocol development, etc.

WSF-10

System Integrator (SI)

Defines component specifications (operating environment and conditions, performance) and drives quantity / demand

TaaS workgroup format:

- **1. System Integrator** (SI) defines components, quantity, and specifications for cryogenic tests
- 2. Component Manufacturer (vendor) provides required components designed to SI specifications
- **3. Test House** provides cryogenic test services at scale with technical input from **Academic Partners**

Goal: Industry standards and certified cryogenic measurements

Roles and Motivation

System Integrator

- Sets the spec for the end user
- Drives demand in the market
- Leads workgroups to develop capabilities
- Reliable and fully characterized components

Component Manufacturer

- Supply the market
- Drives innovation to support the spec
- Provides samples to the workgroup
- Easier access to enter the market and expanded production capacity

WSF-10

Test House

- Performs the measurements
- Drives scalability in the measurement
- Provides the infrastructure to the workgroup
- Revenue and applications to sell its products

8

Academic Partner

- Performs in-depth analysis and certifies test methodologies
- Drives research in the industry
- Provides knowledge to the workgroup
- An avenue to commercialization for research

Pilot Test Case

- LNAs are a critical component in the Quantum readout chain
- Extensive research has already been done
- It is a difficult measurement requiring cryogenics and RF
- Methods are relevant to other critical components

Common Methods

- Scalar vs. Vector measurement
 - Scalar is simpler, but only 50 Ohm impedance
- Cold Load vs. Cold Attenuator
 - Cold Load requires two measurements and another switch

Cold Attenuator

• Most similar to standard room temperature method

WSF-10

- No cryogenic impedance tuner required
- Easiest to automate
- Most common method used by component manufacturers

HPD Model 106 ADR Cryostat

- Pros:
 - Large 4K space for test fixture
 - 2.7K second stage base temperature
 - Shielded and well controlled environment
 - Designed for 30mK on second ADR stage
- Cons:
 - Long test cables with high loss
 - More mass results in slower cooldowns

WSF-10

- Two cryogenic SP6T switches for two port calibration
- LNA mounted in the middle
- Calibrated Cernox for
 accurate temperatures
- Cryogenic standards to set measurement plane

S-Parameter Setup

WSF-10

Noise Temperature Setup

LNA Test Protocol

- LNA-C is a control component with data at cryo
- LNA-T is a proof-of-concept prototype with no cryo data
- Test setup is validated using LNA-C
- LNA-T is used to demonstrate the TaaS model

Measured Parameters

- Common specifications on commercial data sheets
 - Room temperature S-parameters and OP1dB compression
 - Gain and Noise figure at room and cryogenic temperatures
 - Power consumption
- Uncommon specifications
 - Cryogenic S-parameter and OP1dB compression

Cryogenic S-Parameter Calibration

WSF-10

- SOLT standards
- Basic calibration in ENA
- Measure each standard individually

Noise Temperature Calibration

ENR: >40 dB

Cold Attenuator: 30 dB

Cable Loss: 2 – 6 dB

- Calibrate the input of the SA
- Measure the THRU Loss with VNA
- Calibrate and measure attenuator
- Generate loss comp tables
- Apply loss comp with measured temperature

WSF-10

Noise Temperature Model

- Input noise has three components
- For hot noise N_S should be large, source noise dominates
- For cold noise L_Ashould be large, attenuator noise dominates
- Cable noise should be comparably small to be negligible

WSF-10

LNA-C T = 300 K, Vd = 1.35 V, Id = 45 mA

22

23

24

LNA-C Cryogenic Temperature

LNA-C T = 2.81K, Vd = .7 V, Id = 15 mA

26

LNA-C Cryogenic Temperature

27

28

WSF-10

15

Connecting Minds. Exchanging Ideas.

LNA-C Cryogenic Temperature

29

– Test House – Manufacturer

LNA-T T = 300K, Vd = .5V, Id = 10mA

30

LNA-T Cryogenic Temperature

LNA-T T = 300K, Vd = .5 V, ld = 10 mA

32

LNA-T Cryogenic Temperature

LNA-T T = 3K, Vd = .5 V, Id = 10 mA

33

Measurement Errors

- Differing bias voltages due to lead resistance
- Low SNR for S11, S12, and S22 without amplification
- Impedance mismatch of ENR at room temperature
- Cable noise neglected rather than calibrated
- Temperature gradient from attenuator to sensor

4 Port Calibration

- Circulate output signals to ports 3 and 4
- Amplify output signals
- Better SNR on calibration and S11, S12, and S22
- More complex and more expensive

Reliability Testing

- Rapid thermal cycling
- Periodic functional tests
- 20+ thermal cycles from 300K to 4K
- Functional test every 5
- Observe degradation over many cycles

Integration Testing

WSF-10

- Full Qubit Control and Readout
- Well characterized baseline
- Swap out test components to measure change
- Measurement Parameters
 - Resonator Spectroscopy
 - Dispersive Shift
 - Qubit Spectroscopy
 - Rabi Oscillations
 - T1 and T2 Times

Scaling to Production

- Maximize sample space, minimize cycle times
- Single cooldown S-parameter and Noise Temperature
- Automate calibration and measurement sequence
- Test MMIC devices at wafer scale

WSF-10

Conclusion

- More work to improve cryo S-parameter measurement
- Integrate setup in a higher throughput system
- Setup load-lock or other method for reliability testing
- Call to Action! More workgroups, different components
- Cryogenic circulators and isolators are a good next step

