VA SWTHT
1W PROBE TODAY, FOR TOMORROW

Silicon Photonics - Challenges & Solutions
for Wafer-Level Production Tests

I_J_-.-..z_'lr:;:

@FOHMFACTOR“ 3 GLOBALFOUNDRIES

Dr Choon Beng Sia Dr Johnny Yap,
Ashesh Sasidharan, Robin Chen,
Soon Leng Tan, Guo Chang Man

June 2-5,2019



Overview

e Why Huge Demands for Silicon Photonics?
e Why Wafer-Level Photonics Tests?
e What are the Photonics Test Challenges & Possible Solutions?

1. How to Optimize Test Setup for Accurate & Repeatable Measurements?
* How to couple light into a photonics chip (wafer-level)?
e Optimizing Fiber Height and Incident Angle.

2. How to Correlate Wafer-Level Test to Final Product test?
3. How to Achieve Fully Automatic Wafer-Level Production Solution?

e Summary
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Communication Network for 4th Industrial Revolution

5G (10Gbps)
RF/mmW
100B Devices

loT, VR, AR, Telehealth etc Autonomous

--------

Data Center
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Optical

Interconnects
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The Need for High Performance Network & Data Centers

Cyber Security

Video Transcoding
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Photo Credits — FIU Honors College, Peshkova/Shutterstock.com, healthskouts.com, Gecko Governance, www.socionext.com, Www.gsa.gov.
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Facebook Invests USS1B HyperScale Data Center in Singapore

e Facebook’s 1°t
Data Center in
Asia (Hub). — -

— IT Talent & Fiber S=ESS =4

connectivity ~
— 170,000 m?
— 150MW

e 5000 servers

— Each server
supports 100
petabytes or
100,000 TB*

- ‘ Arii?ﬁl.nppresﬁon foi Facebook Data Center in Singapore
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*2015 Facebook Video, 1PB=1000TB

Dr Choon Beng Sia @FQRM[:ACTORT— 5



Requirements for Data Center — High Speed Data Rate

2017 2018 2019

4th Generation 1/0O 5t Generation 1/O

400ZR

600G Telecom/DCI
R&D:  Terabt

> shipmenttimeline > 3 R&Dtimeline

e Wired communication network.

— High Speed, High Data Rate, Low Latency requirements.
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Requirements for Data Center — Energy Efficiency

° Biggest Challenge L WORLDWIDE DATA CENTER FACILITIES - POWER NEEDS IN GW

(Source; New Technologies and Architectures for Efficient Data Center report, July 2015, Yole Déyeloppement)

e Power Usage
— 40% - Server & Switch ’ Latin America
— 40% - Cooling

Asia Pacific

e Today, Data

Centers consume , e
=7% of Earth’s |
power MNorth America

0.0
nio 2011 20112 iz 2014 2015 i g 7 08 2019 1020

e *By 2025, 20%?

With no slowdown in new facility construction, data centers worldwide will have an
increasing need for power.
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*Data Centres of the world will consume 1/5 of Earth’s power by 2025 — Jodo Marques Lima
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Requirements for Data Center — Energy Efficiency

e Urgent need for

Energy-Efficient Data

Centers

e SiPh technology is
rising star in high
speed data transfer.

Dr Choon Beng Sia

ROADMAP OF THE DATA CENTERTECHNOLOGIES AND ARCHITECTURES

(Source: New Technologies and Architectures for Efficient Data Center report, July 2015, Yole Développement)

Emerging NVMs

55D memory oAy
widely deployed ) i g T

SiC-based UPS

Silicon Photonics

Architectures

m DC grid demonstrator
facilities

Containerized
data centers

DC grid data
centers
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Why Silicon Photonics?

e |Improvements in Thin Film Growth

Compound
Semiconductor (llI-V)
| Photonic Integration

— High Quality Ge on Si
e Excellent Lattice Matching
e Hi-Speed Ge-on-Si Photodiodes
e Exploiting Silicon Technologies
— Low-Cost High-Volume Production
— Low-Power Logic devices
— High-Speed RFCMOS devices

— Heterogenous Integration/Packaging

Monolithic lll-V PICs

n Power

SCow
Tec_nn_olggy_ Modulators

‘-q-i—-’.-—-
[T =

DBR Gratings Photodiodes

Dr Choon Beng Sia

SWTest | June 2-5,2019

Hybrid
Electronic-Photonic
Integration

Si Photonics
+ CMOS

Hybrid Si/ lll-V
Wafer Bonding

=ﬁ£
- s,
Saoen’ Vrvegede
- ol

Si Photonics
+ |-V Laser

lll-V Laser
+ CMOS Driver

Silicon
Photonic
Integration

Multi-Project
FabRuns LOW-Loss
=== Waveguides

Germanium (Ge)
Photodiodes
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SiPh Optical Transceivers for Data Centers

Components on SiPh
Transceivers

1. CMOS Logic Chip

— Data Encoding (also decoding)

2. Optical Transmitter

— Optical Modulators - Varying
voltage modulate Data onto Light

— Lasers not implemented on Silicon

3. Optical Receiver

— Ge Photo detectors

— Converts Light to Voltage
4. CMOS Logic Chip

— Data Decoding (also encoding)

SWTest | June 2-5,2019 S FormFacTor 10

Sources: IEEE Spectrum, Yole - New Technologies & Architectures for Efficient Data Center report — July 2015
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Si Electronics
-Die attach
onto SiPh-Die

4

Continuous
Wave Laser
Diode on
SiPh-Die

CFP CFP2 CFP4 QSFP28
4 Ports/Chassis 8-10 Ports/Chassis 16-18 Ports/Chassis 18-20 Ports/Chassis
24W 8W 5W 3.5W

Time

SWTest | June 2-5,2019 il o S

CFP — Centum Form-factor Pluggable ; QSFP28 — Quad Small Form-factor Pluggable 28 Gbit/s ; Christian Urricariet, “Latest Trends in Data Center Optics”, 2016.
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Integrated Optical Transceiver Market

' GaAs integrated
® GaAs discrete
InP integrated

®m InP discrete - -
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Source: LightCounting Year

e SiPh Transceivers - US$2.3B, CAGR >35% (2022).
e Demonstrate using SiPh in Switches for Data Centers.
SWTest | June 2-5,2019
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Integrated Wafer-Level Photonics Test Solution

Optical Test Instruments
& Software

Software for Optical
Positioners & Probe System

6-Axis/Piezoelectric Positioner,

Slingle Fiber/Fiber Array, RF probes, 1SS, Cal, Software & DC probes Fully Au.tomatlc Probe System
Displacement Sensors with Wafer Loader

SWTest | June 2-5,2019
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Overview

e Why Huge Demands for Silicon Photonics?
e Why Wafer-Level Photonics Tests?

e What are the Photonics Test Challenges & Possible Solutions?
1. How to Optimize Test Setup for Accurate & Repeatable Measurements?

* How to couple light into a photonics chip (wafer-level)?
e Optimizing Fiber Height and Incident Angle.

2. How to correlate wafer level test to final product test?
3. How to Achieve Fully Automatic Wafer-Level Production Solution?

e Summary

SWTest | June 2-5,2019
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1.1. How to Couple Light into a Photonics Chip (Wafer-level)?

Cladding

o §i|ica_
= Optical Fiber

Ly

125um

SOl Waveguide

(Wafer) SOI Waveguide v

Silica Optical Fiber
(To Instrument)

e Fiber vs SOl Waveguide — 2 order mag difference in Size
e Direct Coupling = >96% Insertion Loss*
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*CMDITR (Center on Materials and Devices for Information Technology Research) Science and Technology Center
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1.1. How to Couple Light into a Photonics Chip (Wafer-level)?

Lensed fiber (3 pm MFD)
Overlay

e Edge Coupling

— Sub-dB Loss Per Facet — -2dB - -4dB Loss per Grating Coupler
— 200nm — 300nm Bandwidth — Typically 60nm Bandwidth

— Low Polarization Sensitivity — Polarization Dependent

— Harder to Fabricate/Test — Easier to Fabricate/Test

— Fixed Interface (Edge of Chip) — Flexibility of interface positions

— Low Fiber-Chip Alignment Tolerance — High Fiber-Chip Alignment Tolerance

e SWTest | June 2-5,2019

S. Nambiar et al., Appl. Sci., vol. 8, pp. 1142, 2018.
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1.2. Optimizing Setup — Optical Coupling for Photonics Tests

e Grating Couplers (Wafer-Level Tests)
— Fast & Repeatable Fiber to Grating Coupler Alignment is available today.
— Fiber Height (Constant Height to Prevent Damage)
— Incident Angle (Critical to determine Optimal Incident Angle before Production Tests)

" Si waveguide

on wafer Fiber Alignment with Sinusoidal Scan

Dr Johnny Yap SWTESt I J une 2 a 5-“ 2':'19 @FORMFACTOFI“‘ % GLOBALFOUNDRIES 17



1.2.1. Optimizing Setup — Fiber Height (Wafer-Level)

— 1. Set Fiber Height, 2. Peak Search, 3. Make Measurements - Repeat diff. Height
— No Significant Effect on Coupling Efficiency, Peak Wavelength & Bandwidth.
— Good Agreement with Simulation Data.

Optical Waveguide Transmission vs Wavelength(nm)

FiberHeight
® 15um
® 20um
® 25um
® 30um
® 40um

Transmission

&
ko

Optical Power (dBm)

1.45 1.5 1.55 1.6 1.65 1.7

15401545 1550 1555 1560 1565 1570 1575 1580 15851590 Wavelength (um)

Wavelength ()

Dr Johnny Yap
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1.2.2. Optimizing Setup — Incident Angle (Wafer-Level)

— 1. Set Incident Angle, 2. Peak Search, 3. Make Measurements - Repeat diff. Angle

e Use 6-axis positioner to vary incident angle £1° ; Fiber height set with Z sensor (Pivot Cal needed).

— Critical to determine Optimal Incident Angle before Production Tests (1.5dB
improvement).

‘ / Optical Power (dBm) By Wavelength (nm)
—>
¥~ Incident Angle

A

IncidentAng}
8- 1f 1550nm is desired, with 8° Fiber Holder :c;;;; naE

= Ideal Angle, Lowest Loss at 1550nm ® 7pSdeg
® fdeg

Bp5deg
Odeg

Single
Fiber

Optical Power (dBm)

> ¥—__ Rotate Incident
Angle + 1°

Determine
New Flber ‘

ai

Grating Coupler
on wafer

530 1340 15330 1300 1570 1380 1590 1e00
Wavelength (nm)

A tilted Z displacement
sensor after rotation

Dr Johnny Yap
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2. Wafer-Level vs Final Product Tests (Passive Device)
Offset bet wfr-level & final product Obtaining Coupling Losses

Bivariate Fit of Loss(dBm) By Length(cm) Structure=DeepEtched

Offset due to Different :
Coupling Losses
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4 3 | Wafer
Final Product Wafer-Level Measurement
— Critical to correlate Wafer-Level & Final — Edge Coupling & Grating Coupling losses are
product Tests obtained by Cut Back method.
— Using Optical Waveguides as Test Structures e Comparing output intensity of waveguides with

different length
e Different Insertion Losses observed &

SWTest I June 2-5,2019 @@ cLOBALFOUNDRIES 20
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2. Wafer-Level vs Final Product Tests (Passive Device)
Offset bet wfr-level & final product After Coupling Losses Correction

Offset due to Different
Coupling Losses

{dB/cm) (1-2dB/cm)
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4 3 | Wafer

123|451 2|3]4 Wafer
Final Product Wafer-Level Measurement Final Product Wafer-Level Messurement
— Critical to correlate Wafer-Level & Final — Remove Coupling Loss
product Tests

— Comparable Propagation Loss per unit Length.

— Establish Good Correlations between Wfr-level
and Final product Tests!

— Using Optical Waveguides as Test Structures
e Different Insertion Losses observed

Dr Johnny Yap SWTest | June 2-5,2019 &
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2. Wafer-Level vs Final Product Tests (Active Device)

Bivariate Fit of 521 (dBm) By Frequency (GHz)
Wlnpld 7025 -30.721241

IBM's Optical Modulator Photo: IBM

— Testing Optical Modulator (E-O) — Small Difference in BW for Same Die
— Measure 3 dB Bandwidth for all Dies — Good Correlations between Wfr-level &
through Grating Couplers. Final Product Tests.

SWTESt I June 2'51 2“19 “3 GLOBALFOUNDRIES 22
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3. Achieving Automatic Production Photonics Tests

e Challenging for one Test Setup to handle...
— Passive vs Active Device

— Single Photonics Device & Complex Photonics
Integrated Circuit Tests

— Endless Permutations of Test Layouts
Establidhaliesgn Rules,[Siaindardigeet Aigedsd

Photecdinde Daric Current nA

N/P-doped Modulator Resistance ohm DC probes
Fieatzi Resisvance Y
Waveguide Propagation Loss dB/cm
Y-splitter splitting ratio % Optical Fiber Probes
Tap Coupler Coupling Strength %
Modulator Extinction Ratio dB  Optical Fiber Probe(s) +
Photodiode Responsivity DC Probes
Modulator Bandwidth Optical Fiber Probe(s) +
Photodiode Bandwidth RE Probes Photonics Device Tests Photonics IC Tests
Dr Johnny Yap SWTESt I JL”]E 2'5: 2019 @ cLoBALFOUNDRIES 23



3. Achieving Automatic Production Photonics Tests

e Layout Design Rules & 1/0O Standardization

— Establish Test Pads vs Grating Couplers Layout Design Rules.

— Fix DC @North, RF @South, Optical I/Os @East&West side of the DUT.
DC Probe (SMU)

B ] [ S—
Design Rules for Single Fiber Design Rules for Fiber Array (Lightwave Component Analyser)

SWTESt I JU“E 2'5: 2':'19 % GLOBALFOUNDRIES 24
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3. Achieving Automatic Production Photonics Tests

e Implement Automatic Testing Architecture - Modulator as Example
— Peak Search; Optimizing Polarization = Setup optical path

Optical Power

:i ! :';l J) B
nns . ) Meter

HI!
N B

Polarization
Synthesizer

SWTESt I JunE E-EJEDIQ @ELDEALFDUNDRIES' 25
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3. Achieving Automatic Production Photonics Tests
e Implement Automatic Testing Architecture - Modulator as Example

— Bias Tuning to Measure Extinction Ratio (ratio of optical power levels of a digital signal, “1” and “0”)

Source Optical Power
NS
Measure e N Meter
Unit
Polarization

Synthesizer

Tunable !
Laser

SWTESt I JunE E-EJEDIQ @ELDEALFDUNDRIES' 26
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3. Achieving Automatic Production Photonics Tests

e Implement Automatic Testing Architecture - Modulator as Example
— Connect to LCA for RF Frequency Sweep to Measure Modulator Bandwidth

Source
Measure
Unit

Polarization
Synthesizer

Lightwave
Component
Analyzer

SWT'ESt I JU“E 2'5: Eﬂlg ﬁLGBALFDUNDmEE' 27
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3. Achieving Automatic Production Photonics Tests
e Implement Automatic Testing Architecture - Modulator as Example

— Instrument Automation implemented with an Optical Switch. (automation vs power budget)

Source Optical Power
NS
Measure ¥ Meter
Unit
Polarization Optical

Synthesizer Switch

Lightwave
Component
Analyzer

SWT'ESt I JU“E 2'5: Eﬂlg ﬁLGBALFDUNDmEE' 28
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3. Achieving Automatic Production Photonics Tests

version 2.0.4

@ ~ForMFFACTOR™

Out AS data

Input Peak Output Peak

Status: 4/4/2019
Idle 11:08:39

Machine is ready to start...
-1 WaferMap

EEERERED S EEEEOE] oo e e
PZT Input X {um]) i | PEZT Qutput X {um) m:’q@g

Power Meter 0.937
System Status Indicators

0 Hexapo
0 Manocube Moving

o System Initialized

STEPPING TO DIE #1

SWTest | June 2-5,2019
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3. Achieving Automatic Production Photonics Tests

ston =1 157 ) g o) el M [l

@FOHMFACTOR'" = B = IO N = = Z= %Y 22 80 e N8 e resion

version 2.0.4

Out AS data

Input Peak Output Peak

PZT Output ¥ {um)
A FERUE!

PZT Input X {um) PEZT Qutput X {um) m:’q@g

Power Meter 1.604
System Status Indicators

o Hexapod Moving
0 MNanaocube Moving

o System Initialized

PERFORMING INPUT PEAK SEARCH
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3. Achieving Automatic Production Photonics Tests

Optical Motorized DC
Positioner & | Positioner

Motoriiid ‘

| , . % i
— 2 Optical & 2 Motorized DC/RF positioners — Fully Automatic 300mm Probe System

— Handle diff. layout with remote commands — Automatic Wafer Loading/Unloading

SWTESt I JunE 2-51'2':'19 @ELDEALFDUNDRIES' 31
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Summary

e Why Huge Demands for Silicon Photonics?
— Need for Energy-Efficient Data Centers is driving huge demands for SiPh.

e Why Wafer-Level Photonics Tests?

— Determine Known-Good-Dies & Shorten Product Time to Market.

e What are the Test Challenges & Possible Solutions?
— Must Optimize the Incident Angle for Production Tests.
— Achieve Good Correlations between Wafer-level & Final Product Tests.

— Establish Design Rules, Standardize Layout & Implement Automatic Testing
Architecture = Fully Automatic Photonics Tests.
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Factors affecting Performance of Grating Coupler

e Top Silicon Thickness (TL), BOX thickness, Etch Depth (ED), Grating Period (GP) and Fill Factor (FF) are
known to have impacts on the Coupling Efficiency, Peak Wavelength and Bandwidth.

— G0 ED # 10% FF
T ED #20% FF

&0nm ED &30% FF

S0nm ED 40% FF

@ 50% FF

®220mm TL

# 250nm TL

100mm ED

=110nm ED ®60% EF

70% FF

120mm ED

Coupling Efficiency
Coupling Efficiency
Coupling Efficiency

=—130mnm ED

S| == 140mm ED |

& 3 % #80% FF
A & % o v .
| 4 N R ~
m«ié%}h“%m% *+90% FF
515 1550 575 1600 15 1650

1500 1525

1 162

Wavelength Wavelength

| GP —> |
le—> —> |

_ =390nm GP ED I TI_
- =1 0nm GP T

~ a30nm GP

° m——p50nm GP BOX

— 7 0mm GP

® lum BOX

& 3um BOX

Coupling Efficiency
Coupling Efficiency

N

s,
0 tncn it

1550 1575 1600 1625 1650

Wavelength Wavelength Cross-Sectional View of Grating Coupler

e SWTest | June 2-5,2019

Wirth, Silicon Grating Couplers for Low Loss Coupling between Optical Fiber and Silicon Nanowires, Dec 2011
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Mach-Zehnder Modulator

Reversa) | U, >U, >U,
U n,<n,<n,
The phase depends on
Phase coherence N-Doped Silicon the applied voltage U.

AVAVAVAVAVAVAVAVAVAV

VVVVVVVV

P-Doped Silicon

GND
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[1] Modified from KeySight Whitepaper, Everything You Need to Know about Complex Optical Modulation, Sep 2018, 5992-2888EN
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Inverse Taper Edge Coupler

Electric Field

TE Width: 500 nm

ll’llllillllllllllllilllllIllllllllllllllllllllllllllllll Height: 220 nm

Elechic Field

Width: 240 nm
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Requirements for Data Center — Energy Efficiency

g *InfOrmatiOn TEChnOIOgy to 9,000 terawatt hours (TWh)

219 E i
consume 21% of Earth’s power ~ ENERGY FORECAST 20.9% of projected”
by 2030, Widely cited forecasts suggest that the electricity demand

total electricity demand of information and
— Data Centers and Wired Access are communications technology (ICT) will
| t accelerate in the 2020s, and that data
drgSSUCCIIRL IS centres will take a larger slice.
s 1-3% TOtaI Electricity (in 2016)’ B Networks (wireless and wired)
F M Production of ICT
will double every 4 years. Consumer devices (televisions,
) computers, mobile phones)
— 24% consumption by 20287 B Data centres

e #*Governments are now
Regulating Data Centers!

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

e B SWTest | June 2-5,2019 S FormEacror 39

* https://www.nature.com/articles/d41586-018-06610-y Andrae, A. (2015). T Why Energy Is A Big And Rapidly Growing Problem For Data Centers - Radoslav Danilak # White House gets tougher on data centers in new policy - Billy Mitchel
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