Ultra High Temperature Probe Card Solution for Automotive IC Testing

Hirofumi Nagata
Alan Liao

Hsinchu, Taiwan, October 17-18, 2019
Agenda

• Automotive IC Market Overview
• Automotive IC Test Requirements and Probe Card Challenges
• FormFactor Ultra High Temperature Probe Card Solution
• Probe Characterization Result Under Ultra High Temperature Testing Environment
• Actual Probe Card Performance Result by Leading Automotive IC Customer
• Summary and Acknowledgement
Automotive Semiconductor Market Overview
Drive Demand of New Testing Solution

- **Automotive electronics is a fast-growing market**
 - Predictions are between 3%~12% CAGR over next 5 years
 - Average number of semiconductors in a car increases significantly in modern cars
 - Key drivers for automotive IC growth
 - Critical safety system
 - Increased fuel efficiency
 - Navigation and communication
 - Comfort & entertainment features
Automotive Safety Consideration: Zero Defect Expectation

• IC manufacturers adopt Zero Defects Parts per Million (DPPM) design methodology and test to this standard
 — Finding a golf ball in baseball field

• Reasons:
 — Failure rate at the automotive level is higher
 — massive recall and serious economic distress

• Probing Requirement:
 — No Dielectric punch-through
Automotive IC Wafer Sort Test Challenges

- Harsh outdoor environment
- Testing at full thermal range
- Minimize bond pad reliability impact
- Support large volume demand
- Lower test cost

Probe card requirements:
- Wafer sort test with multiple insertion: cold, room, hot temp
- High temp test required
 - 125°C → 150°C → 175°C
- Multiple TD at same bond pad
- Large active area + high parallelism for SoCs
Increase Test Efficiency = Reduce Cost of Test
Maximize Number of DUTs to Reduce Number of TDs

- **Require Full Wafer Touch Down Maximize Touch Down Efficiency**
- **Increase Touch Down Efficiency to Reduce Cost of Test**

<table>
<thead>
<tr>
<th>Touchdown per Wafers</th>
<th>Normalized Cost of Test per Die</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH100 on small Tester</td>
<td>30</td>
</tr>
<tr>
<td>PH100 NG Tester</td>
<td>9</td>
</tr>
<tr>
<td>TSM NG Tester</td>
<td>6</td>
</tr>
</tbody>
</table>

Alan Liao
2nd Annual SWTest Asia | Taiwan, October 17-18, 2019
TrueScale Matrix Probe Card
Thermal Planarity Control

- Thermal gradients in probe card produce differential expansion across probe card components and can produce probe card bow

- Design and build the probe card for better thermal planarity control
 - Mechanical simulation to understand thermal behavior
 - Design automation (real-time probe card deformation simulation) to optimize Mechanical Coupling Link location for planarity control
 - Added flexible shim kit design on inner tester side stiffener
 - Bridge beam hardware add to PC outgoing PXI metrology tool to simulate test head docking condition for planarity adjustment
 - AOT/POT analysis on field to further understand deflection force
TrueScale Matrix Probe Card Architecture
Optimize for High Parallelism and Ultra High Temperature

- **Probe Card Design Requirements**
 - 300mm probing active area
 - Support >256 DUTs, >35000 Probe Count
 - Smallest Pad Size and Pitch: ~55um/65um
 - Temperature Range: -40 to +165°C

- **TSM PC Achieved Large Active Area with Highest Parallelism**
 - Full 300mm active area probing to improve touchdown efficiency
 - FFI proprietary touchdown efficiency analysis software and service
 - T11 UHT Probe Rated -40 to +175°C
 - Modified TSS and Matrix architecture achieved 30um planarity

Alan Liao
2nd Annual SWTest Asia | Taiwan, October 17-18, 2019
DragonBlade T11.4 Ultra High Temperature Probe

<table>
<thead>
<tr>
<th>Metric</th>
<th>T11</th>
<th>T11.4 UHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Temperature (°C) / AOT (um)</td>
<td><=130°C/75um</td>
<td>175°C/100um</td>
</tr>
<tr>
<td></td>
<td><=160°C/65um</td>
<td></td>
</tr>
<tr>
<td>Min pad Pitch (um)</td>
<td>50um</td>
<td>60um</td>
</tr>
<tr>
<td>Scrub Ratio</td>
<td>~10%</td>
<td></td>
</tr>
<tr>
<td>Current Carrier Capacity (ISMI)</td>
<td>1.2A</td>
<td>>1A</td>
</tr>
<tr>
<td>Typical spring constant (gram-force / mil)</td>
<td>0.8 g/mil</td>
<td></td>
</tr>
<tr>
<td>Tip sizes at beginning of life (um)</td>
<td>6um, 8.5um, or 14um ±3um</td>
<td></td>
</tr>
<tr>
<td>Tip sizes at end of life (um)</td>
<td>20um</td>
<td></td>
</tr>
</tbody>
</table>
Final Result in Production Test Environment

• Renesas agreed to share their collecting data.
 – Beam creep data
 – Contact Resistance
 – Probe Mark Characterization Data
 – Probe Mark Photos
Actual Over-Travel vs. Program Over-Travel Analysis

- **Using Pin and Sleeve to analyze probe actual over-travel**

 Install Pin & Sleeve at 5 locations on the PH. Check that the pins have shifted upwards due to the chuck loading.

 AOT/POT Results ≈ 75%
DragonBlade T11.4 UHT Performance
Same capability as T11 with 2x hot temp performance

175C Spring Creep Testing

+150C Beam Droop Data
- Non-Repair Pin

- Repaired Pin

Hirofumi Nagata
2nd Annual SWTest Asia | Taiwan, October 17-18, 2019
Contact Resistance vs. OverDrive

- T11.4 UHT archived stable Cres from 30-40μm OD.
Multi-Contact Performance

- **T11.4 UHT archived stable Cres for all cases.**
 - 10 times TD and move to new surface at 11th TD and 200 times TD test

<table>
<thead>
<tr>
<th></th>
<th>-40°C</th>
<th>R.T.</th>
<th>150°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD80um</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD100um</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD100um</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
T11.4 UHT Probe Mark Size Analysis
Probe Mark Size Past Extreme Temperature Test

Prober Chuck Temperature: -40°C

Prober Chuck Temperature: 160°C

Hirofumi Nagata

2nd Annual SWTest Asia | Taiwan, October 17-18, 2019
T11.4 UHT Probe Mark and Pad Reliability Analysis

No Under Pad Damage at 20TD

<table>
<thead>
<tr>
<th>OD80um</th>
<th>Single TD</th>
<th>Multi-TD : 5 times</th>
<th>Multi-TD : 20 times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OD100um</th>
<th>Single TD</th>
<th>Multi-TD : 5 times</th>
<th>Multi-TD : 20 times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OD80um</th>
<th>Single TD</th>
<th>Multi-TD : 5 times</th>
<th>Multi-TD : 20 times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OD100um</th>
<th>Single TD</th>
<th>Multi-TD : 5 times</th>
<th>Multi-TD : 20 times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cold

Temperature: -40°C

Hot

Temperature: 160°C
Summary

- Automotive IC market continues growing with large demand and zero defects parts

- FormFactor Matrix platform with T11 Ultra High Temp probe provides capability of meeting zero defect testing requirement and the highest testing efficiency for automotive IC wafer sort test

- TrueScale Matrix with T11 UHT probe solution has been validated by key automotive customer and deployed to various tester platforms including T2000, V93K DD, J750
Acknowledgement

Special Thanks!

Tom Watson
Engineering Follow
Tetsuya Miyoshi
Application Engineering Manager

Bunji Yasumura
Director of test technology development dept
Takahiro Mizoi
Senior staff engineer of test technology development dept