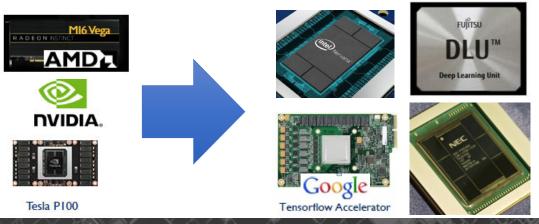
COMP/\SS

a FormFactor users' group conference

Verification of Singulated HBM2 Stacks with Die Level Handler, and Review of Wafer Level Sort Challenges

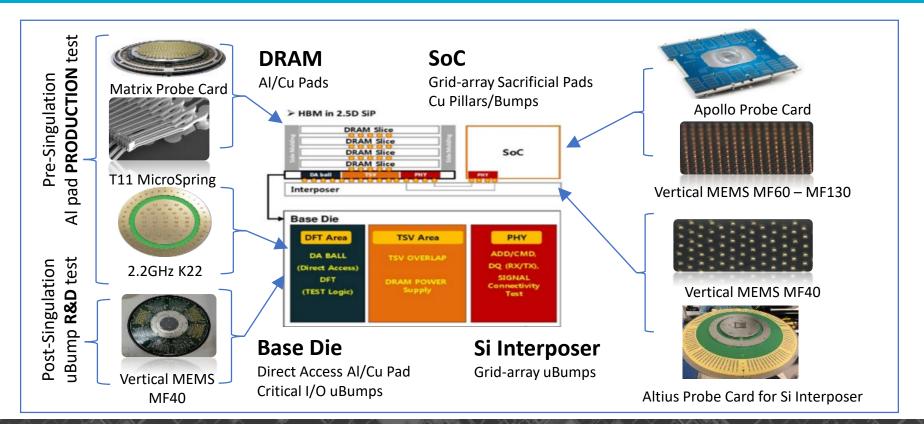
Alan Liao Director, Probe BU Product Marketing



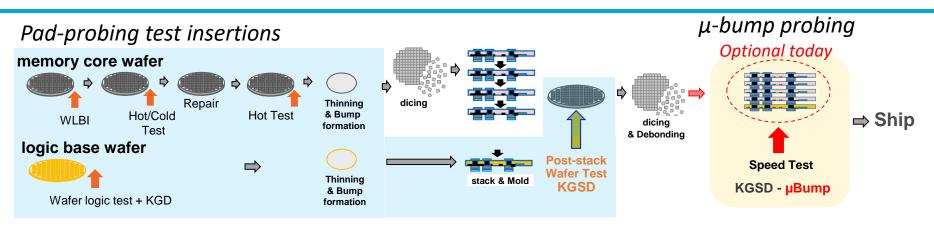
- 1. Aggressive Adoption of HBM Memory
- 2. HBM process flow and test insertion review
- 3. Singulated Stack Direct micro-bump probing challenges
- 4. Sacrificial DFT pad probing challenges
- 5. Future work

HBM Adoption Rate- More Bandwidth-Hungry Applications

- Strong Market Demand for High Bandwidth Memory Just the beginning!
 - 2.5D/3D advanced packaging enabled a new generation products/solutions for graphic, AI, and deep learning AMD, NVIDIA, Intel, Google, NEC, Fijitsu
 - Recent report from "ResearchAndMarket" with bold forecast for HBM & HMC
 - \$1B in 2018 with path to \$3.8B by 2023, a 33% CAGR
 - Applications expanding beyond Graphic into AI, Servers, and Supercomputer


AI Accelerators with integrated HBM

- o Google Tensorflow
- o NVIDIA Tesla
- o Intel Nervana
- o Intel Stratix 10
- Xilinx Virtex UltraScale
- o NEC Supercomputer
- o Baidu


High Bandwidth Memory – Integrated SiP Test Insertions

Enabling HBM and Silicon Interposer Testing

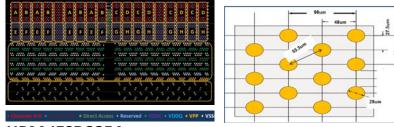
HBM Process Flow and Test Insertions

Key challenges – Pad insertions

- o CTE variation of the stacked wafer
- CTE variation between various stack configuration
- Wafer shrinkage/pad location changes post stack

Key challenges - µ-Bump insertion

- Handling of bare stack die
- o Thermal movement
- Contact stability at elevated temperature
- *Micro-bump "coining" behavior at high temp*

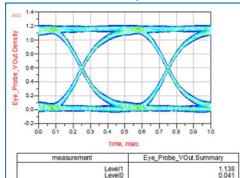

Direct Micro-bump Probing: Key Design Challenges

Probe Technology


- Sub-50um pitch MEMs Probe (48um x 55um)
- 10um tip XY error
- High CCC
- Low K constant
- CRES and Life time

Electrical, Signal & Power Integrity Requirement

- Support at-speed testing > 2.4Gbps
- ~6x3mm die size
- Reliable contact to ~5000 & ~10,000 microbumps
- STF design and manufacturing
- Impedance & X-talk optimization
- Maximize performance margin


HBM JESD235A

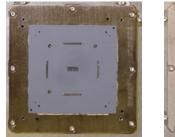
Condition

- Rise time 100pS, 20 to 80%
- 1V swing, no pre-emphasis
- VNA measured data used for eyediagram simulation @BGA side with 1pF termination

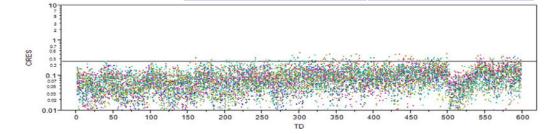
1.0GHz/2133Gbps Measured

Height Width

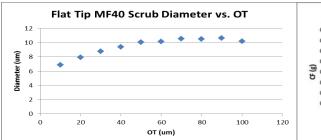
RiseTime FallTime

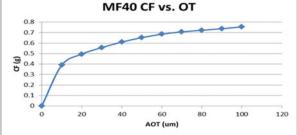


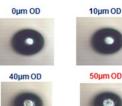
Direct Micro-bump Probing: Application Challenges


- Parallelism
 - X1 and X4 Configuration
- µBump "coining" d/D behavior
 - Spring K designed to minimize bump damage across OT range
- Low K Stable CRES MEMS spring minimum K to achieve good CRES

Cleaning Media	ITS PL-1AH (1um grit)
Cleaning motion	Z-only
Cleaning Over Drive	75µm
TD at each cleaning	10
Device TD between cleaning	20



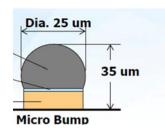

COMP\SS



80um OD

30µm OD

60um OD

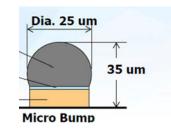

Direct Micro-bump Probing – HBM2 KGDS Test Result

- We succeeded in contacting all I/O pins
- Ambient scrub mark and result
 - Contact Time:6sec, Contact : 1 time vs 2 times
 - Contact Time:600sec, Contact : 1 time vs 2 times

-The scrub becomes deeper as the number of contacts increases

-The scrub becomes deeper as the test time becomes longer

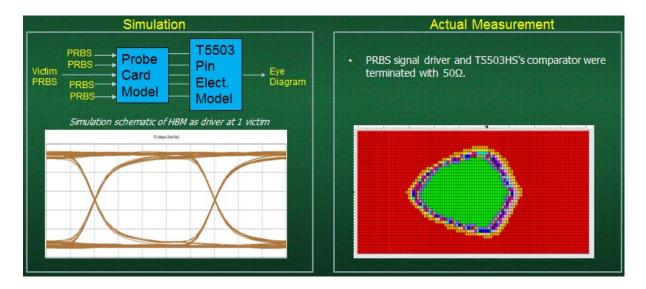
uBump Diameter : 25um Over Drive : 60um Temperature : Ambient


Condition	T.T:6sec 1 time	T.T:6sec 2 times
Scrub depth[um]	0.87	1.72
Scrub diameter[um]	10.86	10.86
Condition	T.T:600sec 1 time	T.T:600sec 2 times
Scrub depth[um]	2.61	2.99
Scrub diameter[um]	14.81	15.04

Direct Micro-bump Probing – HBM2 KGDS Test Result

- We succeeded in contacting all I/O pins
- High temperature scrub mark and result
 - Contact Time:6sec, Contact : 1 time vs 2 times
 - Contact Time:600sec, Contact : 1 time vs 2 times
 - -The scrub becomes deeper as the temperature becomes higher (i.e., 85C, 95C, 105C)

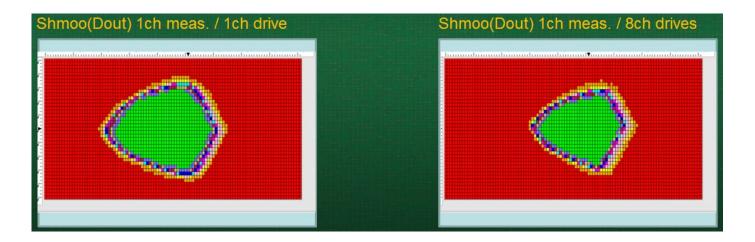
uBump Diameter	: 25um
Over Drive	: 60um
Temperature	: 105degC


Condition	T.T:6sec 1 time	T.T:6sec 2 times		
Scrub depth[um]	1.66	1.84		
Scrub diameter[um]	14.34	16.07		
Condition	T.T:600sec 1 time	T.T:600sec 2 times		
Scrub depth[um]	2.80	3.86		
Scrub diameter[um]	17.06	18.71		

FORMFACTOR

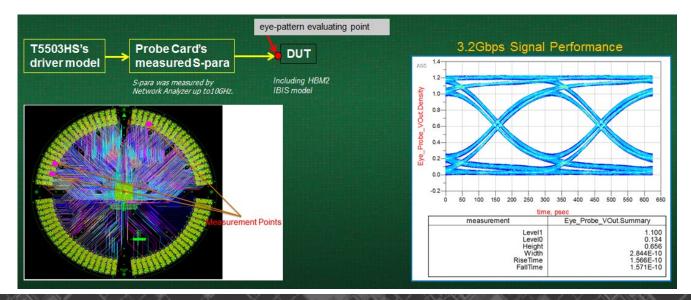
Signal Output/Input Performance on HBM2 Die

- We Simulation vs Actual Measurement result @ 2Gbps
 - The waveform is similar in simulation and actual measurement on HBM2 die
 - Strong eye-diagram performance correlation



Signal Output/Input Performance on HBM2 Die

- Ich drive vs 8ch simultaneous drive actual result @ 2Gbps
 - With data activity on just one memory channel the output data eye width is quite large.
 - With data activity on all eight memory channels the output data eye shrinks.



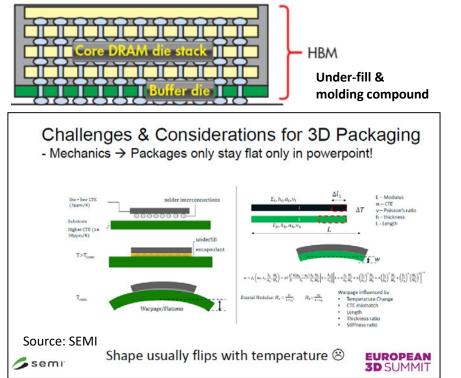
Signal Output/Input at Higher Frequency

- 1.6GHz/3.2Gbps simulation result
 - MF40 technology supports operating speed to 3.2Gb/s with additional design rules optimization
 - Strong simulation versus actual measurement result as validated through ATE at 2Gbps

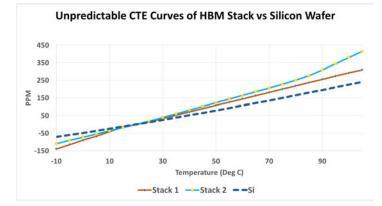
Micro-Bump Test Benefit Summary

- Working together as a team Advantest together with FormFactor developed a production worthy tool for confirming Known-Good Memory Stacks with ~4,000 micro-bumps and < 60um bump pitch.
- The resulting design exceeded our design goals for probe force and CCC with a wide operational temperature range.
- The solution exceeded our high frequency goal demonstrating >3 Gbps performance.
- The solution contacts to all eight HBM channels simultaneously enabling native mode performance and functional testing of these complex devices.

Sacrificial Pad "DFT" – Pre-singulated Probing


- FormFactor is also a leading probe card supplier for the sacrificial pad probing insertion on HBM pre-singulated wafer and stack wafer—
 - FFI SmartMatrix 1500XP and SmartMatrix 2000XP are the main products for probing HBM base die, HBM core die, and final HBM stacked wafer in 4Hi and 8Hi configurations.

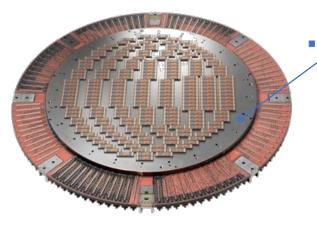
"DFT" Pad Probing Challenges of HBM Stack Wafer


Stacking Wafers and The Expected Thermal Induced Challenges of Composite Wafer

COMPASS

Key Challenges on Composite Wafer

- Wafer Warpage- pad XY coordinate changes
- Wafer CTE changes vs Silicon wafer
- Wafer CTE variations between stack configurations
 - Basically a "moving target" from the probing perspective



Addressing the "Moving Target" Concern of HBM Stack Wafer

SmartMatrix DUTLet based solution for probing HBM stack wafer

DUTLet positioning or placement flexibility

- DUTLet XY position scaled to match composite wafer CTE
- Automatic pick-and-place for the needed precise accuracy
- Like the individual spring/probe, the DUTLets are individually replaceable for best manufacturing yield
- The wafer side stiffener (WSS) substrate material flexibility
 - DUTLet are attached to a WSS metal substrate
 - WSS substrate advantage the ability to select desired material with CTE that matches the various composite wafer configuration
 - Enables probe card to precisely tracks wafer expansion at hot and cold temperature
 - Single temperature and Dual temperature operation

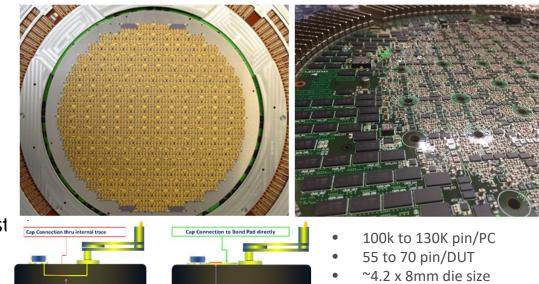
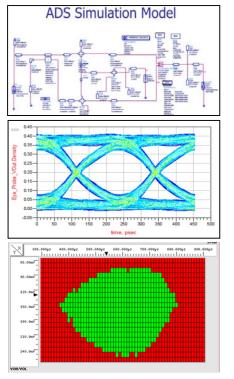
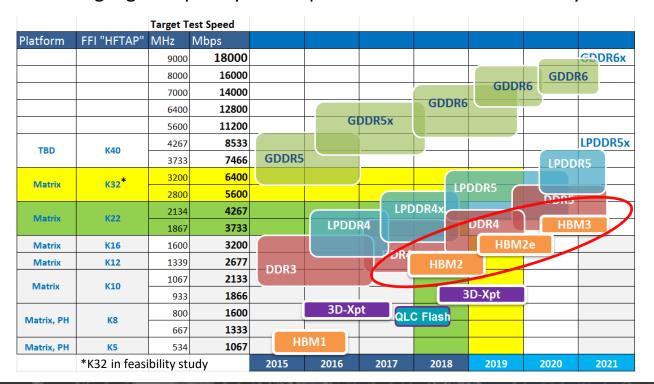


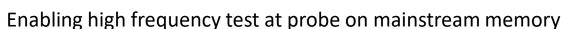
table CTE Curves of HBM Stack vs Silicon Wafe

SmartMatrix 2000XP – for HBM Base, Core, and KGSD 1TD ~2000DPW, ~130,000 pins probe card

- Enabling Technologies
 - Micro-strip DUTLet ceramic
 - MW PCB with advanced routing
 - FFI ATRE : X16-X22TRE, XDC-Boost
 - Advanced capacitor attach process
 - 33% footprint reduction
 - DUTLet surface routing capability
 PI enhancement
- Known-good-stack high frequency test probe (HFTAP)
 - Max parallelism limited by ATE
 - 1.6GHz (3.2Gbps) for HBM2
 - 2.2GHz (4.45Gbps) for mobile and commodity DRAM


- 125MHz (200 with TTRE)
- ~30K total net count
- up to 400kg force nominal
- HFTAP parallelism limits by
 ATE


FFI High Frequency Probe Card Roadmap for HBM Memory


K22 Qualified & in Production

٠

COMP/SS

Future Work Considerations

- Handler
 - Going to multi-die
- Probe Card
 - Micro-bump probing going beyond X4 parallelism and at native speed
 - "DFT" pad probing high frequency at probe up to 3.2GHz (6.45Gbps)

