

TEEE SW Test Workshop

Semiconductor Wafer Test Workshop

June 7-10, 2009 San Diego, CA

Highest Parallel Test for DRAM Enabled through Advanced TRE™

Michael Huebner
FormFactor

Outline

- Parallel test of DRAM
 - Die per Wafer trend
 - Probe count trend
 - Probe force
 - Parallel test methods
- ■Advanced TRE: Example DC-Boost™
- Vision for One Touchdown and status

Parallel Test of DRAM

- Parallel test has been a necessity for DRAM
 - Reduce test cost
 - Reduce cycle time
- Test times are long and are increasing with memory density
- Touchdown count has increased:
 - Die shrink enabled by new technology node
 - Die shrink enabled by new memory architecture (4F²) see SWTW 2008
- Increase of parallel test is the most efficient way to reduce test cost and cycle time

DRAM Trends – Die per Wafer and Parallelism

- Die per Wafer in HVM is increasing and will reach 2000 dpw with 1G DDR3
- Most 1G DDR2/3 are tested with 2 to 7 touchdowns today depending on parallelism
- Increase in parallelism needed to reduce touchdown count June 7 to 10, 2009
 IEEE SW Test Workshop

Industry Probe Count Trend 2009

- Signal count per DUT will decrease but number of power and ground probes will increase further
- Increase in parallel test will boost total probe count
- Overall probe count will continue to increase

Probe Count and Total Probe Force

- For 1 TD or 1500 to 2000 DUT parallel test 75 to 140k probes are needed (depending on probes/DUT)
- Next generation probers are needed to support 2000 DUT
- Majority of installed probers can support ~70k probes June 7 to 10, 2009 **IEEE SW Test Workshop**

Challenge: Total Probe Force

- Problems arising with probe force reaching the limits of the probers:
 - System deflection (see SWTW 2008 presentations)
 - -For high probe count Actual OT is only 20-60% of Programmed OT
 - Increased sensitivity to imbalanced probe layouts
 - -More probes scrubbing in one direction than into the other
 - -Resulting force X/Y components push the chuck
 - With higher probe count and smaller dimensions (pad size and pitch) the thermal management gets more and more important

Probe Count and Total Probe Force

- Overall probe force needs to stay in a manageable region
- Probe force per probe has to decrease
- Certain probe force is needed for stable Cres
- 3D MEMS allows to design a probe with:
 - Stable Cres
 - Enough compliance
 - Short scrub
 - Smaller pads

Probe Force [q] **IEEE SW Test Workshop**

Parallel Test of DRAM – Past and Future

TRE = Tester Resource Enhancement
June 7 to 10, 2009 IEEE SW Test Workshop

The 3 Ways to Increase Parallel Test

Massively parallel tester

- More expensive tester
- Complex probe interface
- Straight forward approach

DFT on Chip

- Simple tester and probe card
- Complex chip design
- Possible die size adder
- Time to market impact

1 TD

Historically a good mix of these three methods has been most successful to increase parallel test. What will be the driver for the next step? June 7 to 10, 2009 Advanced TRE on Probe Card

- Use older less capable testers
- Flexible on new requirements
- Complex probe cards

IEEE SW Test Workshop

PAGE 10

Advanced TRE (Tester Resource Enhancement)

- TRE in the past was limited to control signals = signal TRE
 - One tester driver controls multiple DUTs
 - Signal is split on the probe card
 - -Optimized for signal integrity
- Advanced TRE is expanding TRE now to different classes of signals
- Example: DC-signals
 - DC-signals are used to force voltages trimming
 - DC-signals are used to measure voltages characterization
 - -High accuracy is needed
 - DC-signals are more critical with regards to process related failures than control signal

More capable TRE technology is needed

DC-Boost - FFI DC-TRE Chip

Adding a new degree of intelligence to our wafer probe cards

- First custom designed TRE chip
- Enables TRE on DC-signals:
 - One tester channel can be used for multiple DC-signals
 - Sequence control is provided for voltage measurements
 - -Allow sequential measurements by connecting one signal at a time
 - Isolation capability is provided for disconnecting bad DUTs
 - -Minimize yield loss
 - -Increase accuracy of applied voltage levels

DC-Boost - FFI DC-TRE Chip

Adding a new degree of intelligence to our wafer probe cards

Advantages

- Extend parallel test
 - Double parallelism in combination with other TRE and DFT
 - Extend the life of older tester platforms
- Allow increase of DC-signals per DUT
 - Trend to increase number DC-signals
 - Provides better test coverage
 - New technology nodes tend to need more DC-signals
 - -DC-Boost can enable more DC-signals on older tester platforms
 - -Flexibility to react on changing device requirements

DC-Boost - FFI DC-TRE Chip

Adding a new degree of intelligence to our wafer probe cards

- Smaller than other alternative solutions need 2 to 5k switches today
- Wide temperature range to support high temp SORT and WLBI
- Isolation capability up to 8 DUT use the same driver
- Smart control interface many switches need to be controlled

DC-Boost - Results

- Built several probe cards using DC-Boost
- Running in production at multiple customer sites
- Perfect correlation with non DC-TRE case
- No yield impact compared to non DC-TRE case

Milestones on the Road to 1 TD DRAM SORT

One Touchdown Vision

- Extend test capability via integrated IC development
- Use 3D MEMS probes to enable high probe count probe cards

Acknowledgements

Special thanks to:

- FFI Advanced TRE engineering team
- FFI Application and Product Solution Team