Verification of HBM through Direct Probing on MicroBumps

Marc Loranger
FormFactor

Sung Wook Moon
SK hynix

June 5-8, 2016
Outline

- HBM market
- HBM test flow
- Device structure overview
- Key test challenges addressed
 - Signal delivery and simulation results
 - Direct on MicroBump probing results
- Summary
High Bandwidth Memory (HBM)

• Market requirement
 – Increase data bandwidth well above current GDDR5 technology
 – Decrease power per GB/s of bandwidth
 – Smaller size
 • Improve power distribution
 • Signal transmission

• Long term roadmaps
 – Expand into server applications and high performance computing when reliability is proven
High Bandwidth Memory (HBM)

• **Stacked Memory on Logic Architecture**
 – 2, 4 to 8 die stacked on a Logic Die
 – TSVs are typically employed to stack the memories
 – HBM stack is then mounted on a 2.5D interposer with a processing element

• 1st key application is high performance graphics
Typical HBM Test and Assembly Flow

- Presentation focuses on this Test insertion
HBM 2 Direct Probe on Micro Bumps Requirement

- **Array size**
 - 6022µm x 2832µm

- **Test requirement**
 - 2.133 Gb/s Functional test of the stack
 - All 8 device channels

- **HBM Array Structure**
 - Total TSV Micro Bumps: 3990
 - 55µm Micro Bump Pitch
 - Total IO Micro Bumps: 1728
 - Direct access micro bumps: 176
 - Total Power Supplies: 3
 - 1056
 - Total ground Micro Bumps: 1030

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
HBM MicroBump Test Challenges

• Electrical
 – Number of signals
 • 8 Channel device with ~220 1GHz signals per channel
 • Objective is to test all channels at full application test rate of 2Gbps
 – Key issues to address
 • Signal fidelity from ATE to DUT
 • Signal fidelity of DUT generated signal at the ATE input
 • Cross talk due to small pitch of MicroBumps and contactor space transformer design

• Mechanical
 – Probe impact on the MicroBumps due to at temperature testing with long test times
Simulation Test Cell Overview

- **Contactor is FormFactor Apollo MF-40**
 - ~4000 springs
 - 55µm spring pitch
 - HBM bump pitch
- **ATE configuration**
 - UltraFLEX KGS High Speed Memory Stack tester
- **Device handler**
 - Testing can be done pre singulation of the Stack on a prober or post singulation using a die level handler

Marc Loranger
SW Moon

8 Marc Loranger
8 SW Moon
Signal Fidelity Simulations

• **Conditions**
 – 90pS ATE driver rise time (1V swing 20% to 80%)
 – 1.2V swing used
 – Driver pre-emphasis enabled to optimize signal performance at the DUT

• **Model description**
 – 3 adjacent signals in the space transformer were extracted using Cadence Sigrity SI tool from the space transformer design files
 – Selected longest space transformer signals from the MicroBumps to the PCB
 • Worst case signal path and cross talk environment
 – PCB model used known correlated models for high speed design

• **Simulations**
 – Clock – with cross talk to signals on both sides of the clock
 – Eye diagram
Simulation Model Diagram

- **Signals of Channel F selected for model**
 - Longest signals in Space transformer (ST)
 - Includes region that is *not impedance controlled* as signals escape through the power region
ATE to DUT
Clock waveform

- Low attenuation of the signal due to the probe card
- Cross talk coupling ~90mV (m5-m3)

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
ATE driver to DUT
PRBS 9 – Eye diagram

Single Signals on Center trace

Eye Diagram with induced cross talk
Signals on Center trace displayed
PRBS – 9 signal on 2 adjacent traces
90 degrees out of phase

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
DUT generated signal at the ATE input

• **Key issue**
 – Original concern was that the HBM drivers would not be able to drive the transmission line to the tester

• **Models**
 – SK hynix IBIS models of the HBM2 drivers were used in the simulation model
 – DUT Voh = 1.2V
 – 4 of the device selectable drive strengths were simulated to determine which would be most viable from a signal fidelity perspective
 • 6mA, 9mA, 12mA and 15mA
IBIS Drive Strength Overview

• Eye diagrams observed at probe card ATE connection

- Optimum drive strength is either 9mA or 12mA
 – 12mA used for the subsequent simulations
DUT 12mA IBIS driver to ATE
PRBS 9 – Eye diagram

DUT (IBIS 12mA) to ATE
2.0Gb/s PRBS9

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>te(Height)</td>
<td>676.0 m</td>
<td>450.0 p</td>
<td>157.3 p</td>
</tr>
<tr>
<td>ute(Width)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RiseTime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FallTime</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No ATE load

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
DUT 12mA IBIS driver to ATE
Clock and Cross talk

Single Signals on Center trace

Induced cross talk signal on Center trace with clock on 2 adjacent traces

• Cross talk on victims ~150mV (m2-m1 and M14-m13)
MicroBump Probing

- **Challenges – Assembly Yield Impact**
 - MicroBump damage due to probing on the MicroBumps
 - MicroBump damage due to at temperature testing
 - MicroBump damage from long duration test at temp

- **Evaluations**
 - MicroBump “coining” vs. Over travel vs. temperature vs. Test time

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
MF40 Flat tip scrub mark vs. Over Travel on MicroBumps

- 25°C short duration
- MicroBump Measured diameter 33.5µm

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
MicroBump Damage

Experiment Matrix and Results

- Increasing temperature will increase amount of "coining"
- 50mA of DC current flow does not affect the size of the "coining" on the top of the MicroBump

<table>
<thead>
<tr>
<th>Over Travel</th>
<th>Room Temp</th>
<th>90°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1 Min</td>
<td>10 Min</td>
</tr>
<tr>
<td>60µm</td>
<td>6.4µm</td>
<td>12.4µm</td>
</tr>
<tr>
<td>80µm</td>
<td>8.4µm</td>
<td>13.1µm</td>
</tr>
</tbody>
</table>

Marc Loranger
SW Moon

SW Test Workshop - June 5-8, 2016
Post Touch Down MicroBump Photos

- **TD Duration**
 - 6 Sec
 - 600 sec
 - 1 Hour

- **Room temp**
 - 60µm OT
 - No TD: Measured 33.5µm
 - 6.4µm
 - 80µm OT
 - 8.4µm
 - 12.4µm
 - 15.1µm

- **90°C**
 - 60µm OT
 - 14.6µm
 - 23.5µm
 - 24.1µm
 - 80µm OT
 - 13.5µm
 - 23.2µm
 - 25.2µm
Direct on MicroBump Probing
Summary

• **Electrical Test – Signals paths**
 – Simulation models of the DUT and of the Space Transformer show testing can be done at the device specified operating rate of 2Gb/s on the full 8 channels of the HBM Stack

• **MicroBump Probing**
 – Using fine pitch FormFactor MF-40 probes at the 55µm HBM bump pitch shows increasing MicroBump coining when probing at 90ºC for > 10 min

• **Future work**
 – Evaluation of MicroBump probing on singulated stacks
We thank the following for providing support to the development of this material

Kelvin Ching
Clarence Gapay
Uyen Nguyen
Doug Ondricek
Todd Swart