

Cost Effective 1,000V High Voltage Parametric Test Technique

Takeki Andoh Norio Ishibiki Texas Instruments, Japan Nobuhiro Kawamata Yoichi Funatoko FormFactor , Japan

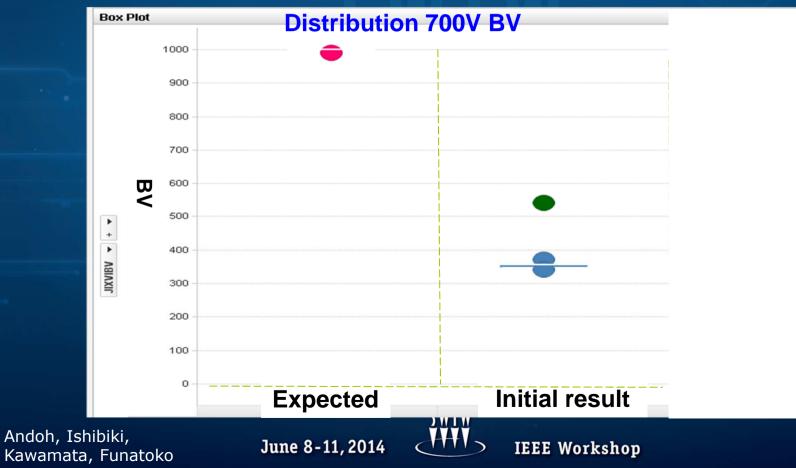
Overview

- DC Parametric Test Objectives
- Problem Statement
- New Test Technique
- Probe Card Development
- Measurement Result
- Summary and Conclusion
- Follow-on Work

DC Parametric Test Objectives

• Stable Measurement of Breakdown Voltage at 1,000V

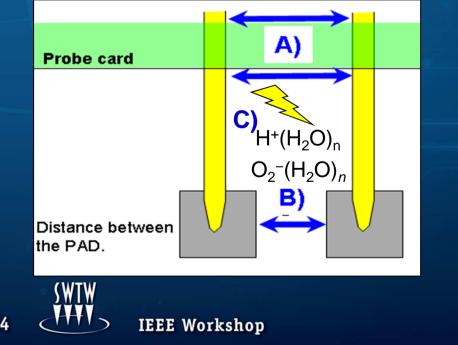
Stable Low Leak Test (Input Level)


Low Cost Test System for Production

Problem Statement

Conventional Test System

- Unstable Voltage Measurement Result
- Voltage Degradation



Investigate Voltage Degradation Root Cause A) Leak by discharge on surface of the Probe Card.

B) Leak by discharge on surface of the device.

C) Atmospheric Humidity

Current Leak through cluster ion formation

Andoh, Ishibiki, Kawamata, Funatoko

June 8-11, 2014

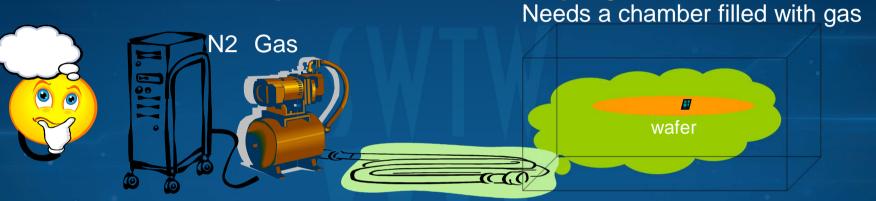
5

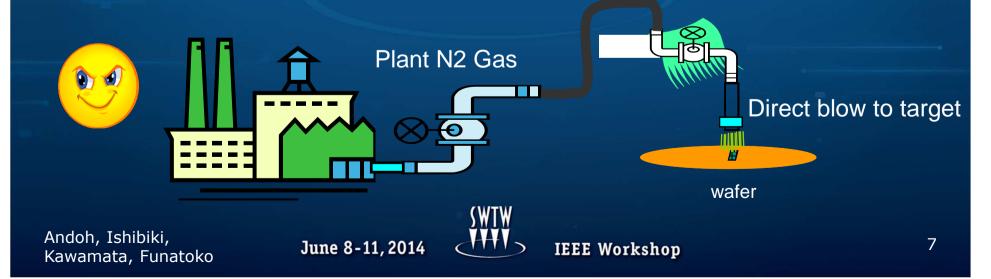
Conventional High Voltage Test System

• Hardware

- Chamber type prober
- N2 Gas System
- Cost
 - Expensive
- Operation
 - Wait 20minutes for filling gas

Too Expensive and Low Productivity

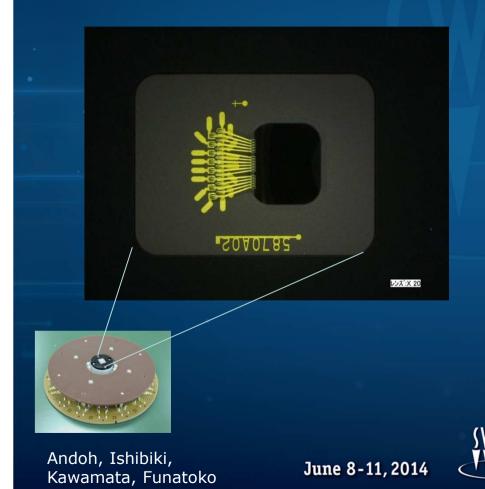

Andoh, Ishibiki, Kawamata, Funatoko

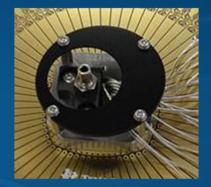


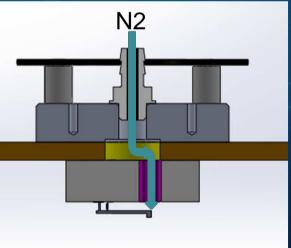
New Test System Idea

Conventional (Chamber Based) System

Texas Instruments Miho Idea (Pinpoint)

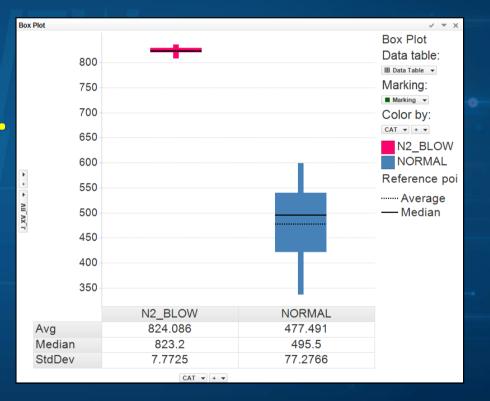



New Test System


	Chamber Type Prober Conventional System	Dry Gas Purge Probe Card New System
Hardware	 Low Temp Chamber Type Prober N2 Gas System 	 Nozzle for N2 Gas Probe Card Development for Production Use
Cost	500 (relative to new system)	1
Operation	Wait 20minutes for filling gas	No wait time
Andoh, Ishibiki, Kawamata, Funatoko	June 8-11, 2014 JUNE BEE	E Workshop 8

Probe Card Development

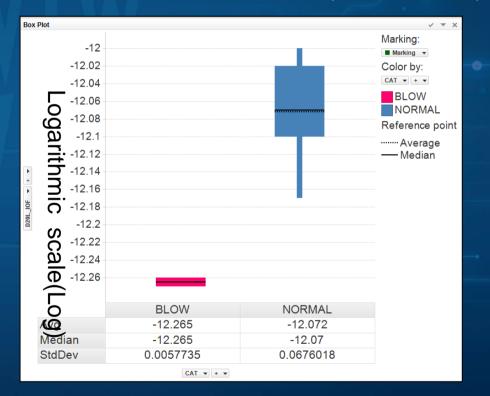
N2 Gas Hole on Ceramic N2 Gas Mechanical Option



High Voltage Test Data

- Achieved a stable High Voltage measurement by pinpoint blow system.
- No Operation wait time required.

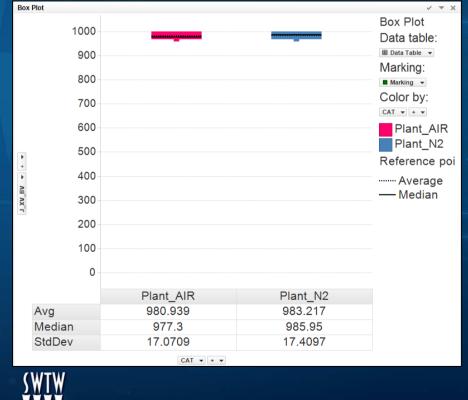
High voltage test N2 Blow vs. Normal(No N2 Blow)



Leak Test Data

• Stable Leak Test Result with N2 blow

Leak test *CMOS Low voltage element N2 Blow vs. Normal(No N2 Blow)



Condensed Dry Air Blow vs. N2 Blow

Same distribution for both CDA and N2 Blow.

High voltage test CDA Blow vs. N2 Blow

Andoh, Ishibiki, Kawamata, Funatoko

Additional Benefit : Cleaning

Wafer Particle Number Data by N2 Blow

STD	N2 BLOW
112	10

• Probe Tip Cleaning by CDA Blow

Loose Al Debris on Tip was removed by CDA Blow

Before CDA Blow

i/ _____

G

Andoh, Ishibiki, Kawamata, Funatoko

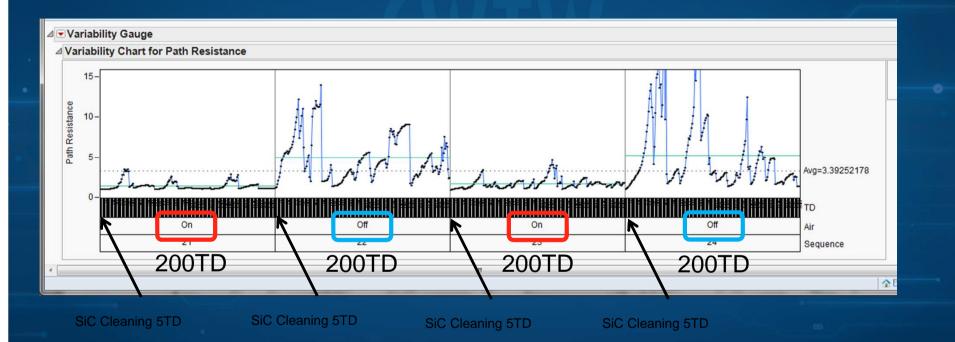
June 8-11, 2014

IEEE Workshop

After CDA Blow

53

Probe Tip Cleaning by CDA Blow Video



Andoh, Ishibiki, Kawamata, Funatoko

Additional Benefit : Stable Cres by CDA On

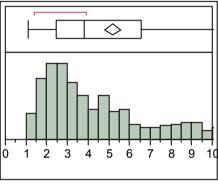
• FFI T3 Spring Al Wafer 2Pin Path Resistance Evaluation by CDA On/Off

• Verified CDA was effective on FormFactor MicroSpring Cres

Reference : SWTW2006 Austin, Grayson, and Wegleitner, CRES Control Using CDA as a Shielding Gas

Andoh, Ishibiki, Kawamata, Funatoko

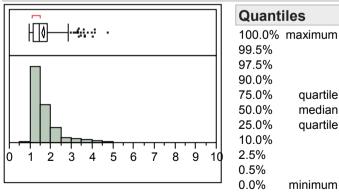
June 8-11, 2014



IEEE Workshop

Additional Benefit : Stable Cres by CDA On

Distributions Ai =Off


Path Resistance

_						
	Quantiles			Summary Statistics		
l	100.0%	maximum	31.7277	Mean 5.1650153		
	99.5%		20.4029	Std Dev 3.948681		
	97.5%		16.3228	Std Err Mean 0.1974341		
	90.0%		10.2139	Upper 95% Mean 5.5531563		
	75.0%	quartile	6.58943	Lower 95% Mean 4.7768743		
	50.0%	median	3.7978	N 400		
	25.0%	quartile	2.47238			
	10.0%		1.8111			
þ	2.5%		1.42032			
	0.5%		1.16589			
	0.0%	minimum	1.10807			

Distributions Ai =On

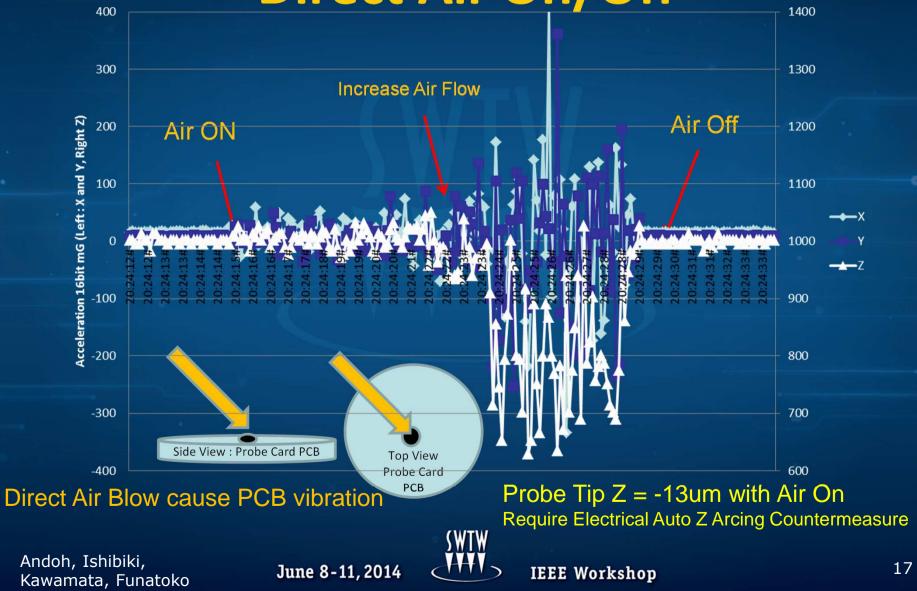
Path Resistance

	Summary Stat	istics
4.71496	Mean	1.6200283
4.11593	Std Dev	0.6098033
3.5676	Std Err Mean	0.0304902
2.37372	Upper 95% Mean	1.6799697
1.85915	Lower 95% Mean	1.5600868
1.45491	Ν	400
1.17833		
1.12432		
1.06719		
1.00764		

2Pin Path Resistance

Andoh, Ishibiki, Kawamata, Funatoko

CHH2 June 8-11, 2014


quartile

median

quartile

minimum 0.97336

Probe Card PCB Vibration with PCB Direct Air On/Off

Probe Tip Vibration Video by N2 Flow Rate N2 Mechanical Option Probe Card Evaluation • 70L/min

Andoh, Ishibiki, Kawamata, Funatoko

Probe Tip Vibration Video by N2 Flow Rate N2 Mechanical Option Probe Card Evaluation • 130L/min

Andoh, Ishibiki, Kawamata, Funatoko

Prober Alignment and Scrub Mark Position Evaluation by N2 Flow Rate

Flow(L/min)	0	50	70	80
Auto Setup	Pass	Pass	Pass/Error	Error
Manual Setup	Pass	Pass	Pass	Pass
Scrub Mark Position	Pass	Pass	Pass	Pass
X Margin(um)	33.1	32.7	26.3	25.2
Y Margin(um)	30.9	30.4	28.3	30.2
Scrub Length (um)	14	12	13	12
Scrub Width (um)	6	6	6	6

- Vibration Affected Prober Tip Alignment
- No Major Change for Scrub Mark Position
- Need to optimize, Flow rate and direction

Andoh, Ishibiki, Kawamata, Funatoko

June 8-11, 2014

IEEE Workshop

Summary : New Test System

	Chamber Type Prober Conventional System	Dry Gas Purge Probe Card New System
Hardware	 Low Temp Chamber Type Prober N2 Gas System 	 Nozzle for N2 Gas/CDA Evaluated N2 Gas/CDA Mechanical Option Probe Card
Cost	500 (relative to new system)	1
Operation	Wait 20minutes for filling gas	No wait time
Andoh, Ishibiki, Kawamata, Funatoko	June 8-11, 2014 JUNE IEI	EE Workshop 21

Summary : Test Result

	No CDA/N2 Blow	CDA/N2 Blow
High Voltage Test	<600V Standard Deviation 77.27	>800V Standard Deviation 7.77 9.9X Improvement
Leak Test	Standard Deviation 0.067	Standard Deviation 0.005 13.4X Improvement
Cleaning Wafer	Number of Particle 112/wafer	Number of Particle 10/wafer 11.2X Improvement
Cleaning Probe Tip	Al debris stick on probe tip	Remove loose Al Debris on Tip
Contact Resistance	Standard Deviation 3.94	Standard Deviation 0.60 6.5X Improvement
Andoh, Ishibiki, Kawamata, Funatoko June	e 8-11,2014 IEEE Work	shop 22

Conclusion

- Successfully Developed Cost Effective High Voltage 1,000V Measurement System.
- Probe Card was evaluated for N2 Gas and CDA(Compressed Dry Air) system.
- New Measurement System was released for production.
- The other benefit, Stable Leakage and Contact Resistance, and Cleaning effect observed.

Follow On Work

>1,000V High Voltage Test

• Probe Card Ceramic Hole Opening Process

- Improve Lead-time
- Improve Yield

Acknowledgements

Team Member

- Texas Instruments, Japan
 - Kenji Sasame
 - Koichi Sato
 - Kiwamu Yuasa
- FormFactor
 - Larry Levy
 - Hiromitsu Sasanami
 - Shinpei Yoshida

• References

– SWTW2006 : Austin, Grayson, and Wegleitner, CRES Control Using CDA as a Shielding Gas

Andoh, Ishibiki, Kawamata, Funatoko

