“Pay it Forward”, is it worth it?
Alan Romriell (Spansion) & Amy Leong (FormFactor)
San Diego, CA USA June 4th 2007
Agenda

- Wafer Test Cost Crisis
- Opportunities for Test Innovation
- Case Study
 - Proposed Test Flow Repartitioning
 - Assumptions
 - Scenario 1: Reduce Package Cost
 - Scenario 2: Reduce Test Cost
 - Scenario 3: Improve Product Yield
 - Case Study Summary
- Conclusions
Wafer Test Cost Crisis
Dangerous trend in device ASP and test cost

NOR ASP is declining at much faster rate than wafer test cost!

Source: Gartner & FFI Marketing
Wafer Test Cost Crisis

Cost challenges lead to industry consolidation

2004

1. Spansion
2. Intel
3. ST.
4. Sharp
5. Renesas
6. Toshiba
7. Samsung
8. [Component]
9. Micron
10. Intel

2007

1. Spansion
2. Intel
3. ST.
4. [Component]
5. Renesas
6. Toshiba
7. Samsung
8. [Component]
9. Micron
10. Intel

2010

1. Spansion
2. Intel
3. SAMSUNG
4. [Component]
5. Renesas
6. Toshiba
7. Samsung
8. [Component]
9. Micron
10. Intel

Source: Gartner & FFI Marketing
Wafer Test Cost Crisis

CHINESE CHARACTERS FOR “CRISIS”

Danger Opportunity
Opportunities for Test Innovation

- Test Innovation: Migrate test upstream
- Cost reduction can move ahead of device ASP decline

Test Flow:
- Sort 1
- Sort n
- Assy
- Burn-in
- FT

Cost Breakdown:
- 100% Cost
- <50% Cost
Case Study
Proposed Test Flow Repartitioning

Typical Test Flow
- SORT 1
- SORT 2
- PKG'ING
- PKG BI
- FINAL TEST

Proposed Test Flow
- BURN-IN
- SORT TEMP 1
- SORT TEMP N
- @ SPEED TEST
- PKG'ING
- PKG BI
- FINAL TEST
Case Study
Probe Card Products

Wafer Level BI

At speed Test

FFI UPStream Probe Card

FFI High Frequency Probe Card (HFTAP)
Case Study
Assumptions

- **Die/200mm Wafer Eqv: 800 dpw**
 - Typical Devices: 70nm 512Mb DDR2, 90nm 256Mb NOR
- **Run Rate: 100,000 wspm (200mm eqv.)**
 - Typical 300mm fab maximum capacity: ~40-45k WSPM
- **Yield Assumptions:**
 - 95% Wafer Test Yield
 - 95% Package Yield
 - 98% Final Test Yield
Scenario 1: Reduce Package Cost

Scenario 1: WLBI eliminates more non-repairable dies

- Save package cost for the non-repairable dies
Scenario 1: Reduce Package Cost
Wafer Test Opportunity to Reduce Packaging Cost

- Increasing packaging cost as % in product cost
- **1% wasted package = $12M annual revenue loss**
 - BGA: -> $1 per unit
 - 300 Million Units/Qtr

Source: Gartner & FFI Marketing
Scenario 1: Reduce Package Cost

Trade-off Questions

Question: But I have to spend more $ on wafer test Capex and probe card. How does it compare to the package cost saving?

Answer is ...
Scenario 1: Reduce Package Cost

Packaging Cost Saving vs. Increased Wafer Test Investment

Annual Package Cost Saving by Eliminating Non-repairable Bad Dies at Wafer Test

<table>
<thead>
<tr>
<th>% of bad die in package</th>
<th>$9.7</th>
<th>$19.4</th>
<th>$29.1</th>
<th>$38.8</th>
</tr>
</thead>
</table>

Annual Investment for BI at Wafer Level (Capex + Consumable)

Economically worthwhile to increase wafer test to reduce package cost
Scenario 2: Reduce WLBI Test Cost

Introduce High Temp BI at Wafer Level

Case 2: Add High temperature WLBI to reduce BI cost

- Reduce package BI time
- Detect more early life failures
- Earlier and more data for feedback to Fab
Scenario 2: Reduce WLBI Test Cost

BI Test Cost Reduction

- Decreased total test cost
 - 41% with WLSBI @ 125°C
 - 64% with WLSBI @ 140°C
- Increased yield
 - 2% yield increase after package BI
- Reduced package BI time
 - BI time cut in half with 140°C

![Cost/Unit Bar Chart]

- Conventional BI
- WLBI (300s@125°C) +2% Yield
- WLBI (180s@ 140C) +2% Yield

100%
59%
36%
Question: Can the probe card work reliably at high temperature in production environment?

Answer is ...
Scenario 2: Reduce WLBI Test Cost

High Temperature BI Probe Card

- WLBI probe card needs to be optimized for
 - High temperature
 - High parallelism
 - Low pad damage

MicroSpring™ optimized for tight pitch at high temperature

Selection of high temperature electronic component

FFI proprietary thermally optimized system for stable planarity at high temperature
Scenario 3: Improve Product Yield
Migrate Partial Final Test to Wafer Level

- **Scenario 3: Moving some final test to wafer**
 - Detect and repair more dies to improve product yield
 - Higher probing temperature to replicate final test conditions
 - At speed test to validate device performance
Scenario 3: Improve Product Yield

Trade-off Questions

Question: High speed testers are very expensive. How much yield gain do I need to make it worthwhile?

Answer is ...
Scenario 3: Improve Product Yield

Yield Gain vs. Increased Wafer Test Investment

Annual Product Revenue Gain by Migrating Final Test to Wafer for Yield Gain

- **$33.6**
- **$67.2**
- **$105.6**
- **$139.2**

Economically worthwhile to increase wafer test to improve yield

Typical range of annual Wafer Test Investment for High Speed Wafer Sort (Capex + Consumable)

- **$33.6**
- **$67.2**
- **$105.6**
- **$139.2**

% of die gain by repair at wafer level

- 1.00%
- 2.00%
- 3.00%
- 4.00%

As expensive as high speed wafer sort sounds, 1% product yield gain would make it all worthwhile!

SWTW 2007 - 20 - Spansion and FormFactor
Scenario 3: Improve Product Yield

Trade-off Questions

Question: Will high frequency sort work in high parallelism? Where are the limits?

Answer is ...
Scenario 3: Improve Product Yield

Trade-off Questions

Question: Will high frequency sort work in high parallelism? Where are the limits?

- **Answer** …
 - Simulations look promising
 - FFI has proven expertise on high frequency probing
 - Demonstrated x2 TRE @ 100MHz (SWTW Paper 2004)
 - Demonstrated up to 500MHz for non TRE
 - So there is only one way to find out whether it works: *Try it!*
 - The benefits are there, go for them!
Case Study Summary
Economics Benefits

Annual Product Cost Benefit by Test Flow Optimization

- Economically worthwhile if gain > 1%
- Yield difference

<table>
<thead>
<tr>
<th>Scenario 1: Package Cost Saving</th>
<th>Scenario 3: Product Revenue Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00%</td>
<td>$33.6</td>
</tr>
<tr>
<td>2.00%</td>
<td>$9.7</td>
</tr>
<tr>
<td>3.00%</td>
<td>$19.4</td>
</tr>
<tr>
<td>4.00%</td>
<td>$29.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$0</th>
<th>$30</th>
<th>$60</th>
<th>$90</th>
<th>$120</th>
<th>$150</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00%</td>
<td>$33.6</td>
<td>$67.2</td>
<td>$105.6</td>
<td>$139.2</td>
<td>$167.2</td>
</tr>
<tr>
<td>2.00%</td>
<td>$9.7</td>
<td>$19.4</td>
<td>$29.1</td>
<td>$38.8</td>
<td>$48.1</td>
</tr>
<tr>
<td>3.00%</td>
<td>$19.4</td>
<td>$29.1</td>
<td>$38.8</td>
<td>$48.1</td>
<td>$58.2</td>
</tr>
<tr>
<td>4.00%</td>
<td>$29.1</td>
<td>$38.8</td>
<td>$48.1</td>
<td>$58.2</td>
<td>$68.3</td>
</tr>
</tbody>
</table>
Case Study Summary

Economics Benefits for MCP

- Economic benefits for MCP will be even bigger!
- 1% yield delta for single chip = 5% yield delta for 5-die MCP

MCP Yield Curve vs. Single Die Yield

Picture of Multi-chip-package (MCP)
Conclusions

- Memory device market price pressure calls for test innovation to reduce product cost
- Migrating test upstream can provide earlier feedback for improved yield and down-stream manufacturing cost savings for the non-repairable device on wafer
- The incremental increase in wafer test spending can be easily justified if >1% yield difference is realized
- The benefits are there, go for them!