FORMFACTOR The MicroSpring®Company

Optimization of MicroSpring[®] Contact Design Parameters for Low Pressure Probing

Rod Martens, Larry Levy Southwest Test Workshop 2004

June 7, 2004 SouthWest Test Workshop 2004

Contents

- Industry Driven Probing Requirements
- Probing Operating Space
 - Cres
 - Scrub Mark Metrics
- Case Study
 - Predictive Probing at FormFactor
 - Scrub Mark
 - Cres
 - Customer Validation
- Conclusion

p. 2

Industry Trends

- New Bond Pad Stackups
 - Copper metallization
 - Low K dielectric
 - Probing over active area
- Lower Power Devices, driven by mobile products, reduce test margins

Probing Operating Space Cres Vs. Pressure

- Pressure is an independent variable that modulates both Cres and the scrub mark metric.
- Must balance two opposing requirements

Probing Operating Space Scrub Mark Metrics

- Length
- Width
- Depth
 - Expose lower stack metals
 - Package reliability issues
- Size/Location
 - Hit passivation
- # of TD's
 - Multiple sorts common
 - Double touch recipes common

Case Study New Bond Pad Stack-up Metallization

Requirements:

- No exposure of base metal after repeated touchdowns
 - Thin Al over base metal
- Low, stable Cres
- Approach:
 - Predictive Probing at FFI
 - Scrub Characterization
 - Cres
 - Customer Site Validation
 - Scrub Characterization
 - Qualification

Experimental Setup Predictive Probing at FormFactor

p. 7

Experimental Setup Predictive Probing at FormFactor

Au plated Cres Test Coupon shown

June 7, 2004

SouthWest Test Workshop 2004

Predictive Probing Evaluation of Pressure Parameters

- Pressure is a first order variable for both Scrub mark and Cres.
 - Pressure=Applied Force/Contact Area
- FFI design parameters and probing recipes can be optimized to control pressure for specific applications.

Predictive Probing Pressure Evaluation Effects of K and Overtravel

- 15 touchdowns in same spot
- Standard tip size
- Blanket wafer with customer metallurgy/stack

Κ

June 7, 2004

Predictive Probing Pressure Evaluation Effects of K and Tip Size

- 15 touchdowns in same spot
- The low and high g/mil springs were grown from standard to large by repeated touchdowns on a controlled abrasive surface
- "High" OT for all cases.
- Tip size is dominant variable.

p. 11

Pressure Surface Relationship

For Constant Overtravel

Predictive Probing Cres Evaluation Au and Al Coated Substrates

Predictive Probing Cres Evaluation Force vs. Resistance – Holm Theory

$$R_c = \frac{\rho}{2} \sqrt{\frac{\pi H}{F}} + \frac{\sigma_f H}{F}$$

- Aluminum Material Properties (from MatWeb):
 - H_{al}= 15 Kg/mm²
 - ρ_{al}= 2.7E-6 Ω-cm
 - $\sigma_{\rm f}$ is unknown.
- Since all other variables are known, the film resistivity for the Aluminum case can be estimated from the experimental data.
 - $\sigma_{\rm f}$ ~ 2.5E-7 Ω-cm²
 - Establishing this material parameter allows for more accurate estimates of Cres for future applications.

Predictive Probing Summary Customer Site Evaluation

- Predictive Probing Summary
 - Evaluated significant parameters for scrub mark
 - Design parameters selected for field evaluation
 - Characterized Cres to high resolution
- Customer evaluation
 - Several cards were evaluated at customer site
 - Varied K, tip size and number of touchdowns
 - Probed test wafers with production metal stack
 - Cres monitored for all tests
 - Objectives:
 - Define design parameters for qualification
 - Define probing recipe for qualification

Field Characterization

Cres/Scrub Mark Metric Vs. Pressure

Product Qualified

- All Qualification testing passed
 - Lifetime Test
 - ILD damage
 - Scrub Cpk
 - Multiple TD analysis
 - Package reliability

Conclusion

- FormFactor's MicroSpring Contact probing solution allows for customization for specific applications
 - Overtravel
 - K
 - Tip size
- Predictive Probing enables FFI to simulate customer environments
 - Validated at multiple customers and applications

Acknowledgments

Intel

- Trung Nguyen, Mike Dang, Reuben Gallegos

FFI

- Fred Lane, Eric Watje

р. **20**