INNOVATION PUT TO THE TEST

One Touch 300 mm wafer probing

Sunil Wijeyesekera June 14, 2006

Synopsis

The problems encountered with 1 TD 300 mm wafer probing are unique enough that an approach that simply scales up traditional probe card architecture and industry practice is not sufficient.

To resolve the specific setup and throughput issues associated with 1 TD requires a systems level approach where probe card, prober and tester vendors work collaboratively to solve customer problems.

1TD Probing Process Challenges

1TD Challenges	Impact on Probing		
Co-Planarity across wide area	More Adjustments or Yield Loss		
	Setup issues (x/y alignment)		
	More maintenance (cleaning		
High probing forces	change out)		
	More planarity adjusts risk		
	opens/ Cres		
Testcell Productivity and Xput	Back-up testers and probecards		
Setup times, thermal behavior			
Maintenance, debug and repair			

300mm 1TD challenges – Planarity & Tilt

To maintain spec, we have to be 2 x better than we have been before

Sunil Wijeyesekera June 13, 2006

Problems impacted by planarity and tilt

Planarity correlation between customer and supplier. Test floor to test floor correlation – cards are shipped between sites. Test system to test system correlation – on a single test floor

300 mm 1 TD predicted to be at least 2 x adjustment rate of PH150

Sunil Wijeyesekera

June 13, 2006

How to address planarity and tilt

System to system correlation

- Usually carried out using a "standard" that is measured across the floor.
 - Glass mask
 - Golden probe card.
 - Ceramic probe card.
- Issues with correlation
 - Extensive Time and work required.
 - System downtime.
 - Repeatability and accuracy.

In-situ tilt control

- Issues with this method
 - Automation has not traditionally been available
 - Card often has to be pulled out of the prober to adjust, while measurement is done inside the prober.

Results of System Level tilt control on a 1 TD card

Card left factory with 20 um planarity

Adjusted at customer using one leveling point Will be automated in the future

Sunil Wijeyesekera June 13, 2006 One Touch 300 mm Wafer Probing

1TD Probing Process Challenges

1TD Challenges	Impact on Probing		
Co-Planarity across wide area	More Adjustments or Yield Loss		
	Setup issues (x/y alignment)		
	More maintenance (cleaning		
High probing forces	change out)		
	More planarity adjusts risk		
	opens/ Cres		
Testcell Productivity and Xput	Back-up testers and probecards		
Setup times, thermal behavior			
Maintenance, debug and repair			

300mm 1TD challenges – High Probe Force

This is a big jump in force over current products

				Low	High
				Force	Force
	Springs	# of		Spring	Spring
Product Type	/DUT	DUTs	Springs	Kg	Kg
Nand Flash	25	500	12,500	63	125
NOR Flash	40	800	32,000	160	320
DRAM #1	75	500	37,500	188	375
DRAM #2	75	1000	75,000	375	750

* Low spring force is 5 grams per contact

Sunil Wijeyesekera June 13, 2006

300mm 1TD challenges – High Probe Force

System deflection results in 35 % loss of effective spring compression

Sunil Wijeyesekera June 13, 2006 One Touch 300 mm Wafer Probing

300mm 1TD challenges – High Probe Force

Compliance Contributions

■ Head Plate ■ Chuck ■ Probe Card

Unbalanced loading leads to horizontal system compliance

Sunil Wijeyesekera June 13, 2006 One Touch 300 mm Wafer Probing

Methods for adjusting for system z compliance

Engineering studies on cards with different probe counts

- Platform dependent
- Issues with resolution, accuracy

Add stiffeners to the probe cards

- Adds mass (approaching ergonomic limits)
- The high CTE of the stiffener can cause thermal bending.
- Adds thermal mass, which increases setup times.
- May not fit in space allocated for probe card.
- Adds cost

The most effective approach is to look at the structural rigidity of the system

Sunil Wijeyesekera June 13, 2006

Results of minimizing system compliance

Rigid element attached to tester motherboard

Force = 200 kgms

Max Deflection = 3.4 um

Vertical Z Deflection

<u>No Tilt</u>

Sunil Wijeyesekera June 13, 2006 One Touch 300 mm Wafer Probing

1TD Probing Process Challenges

1TD Challenges	Impact on Probing		
Co-Planarity across wide area	More Adjustments or Yield Loss		
	Setup issues (x/y alignment) More maintenance (cleaning change out) More planarity adjusts risk opens/ Cres		
High probing forces			
Testcell Productivity and Xput	Back-up testers and probecards		
Setup times, thermal behavior			
Maintenance, debug and repair			

300mm 1TD challenges – Uptime

- Baseline no thermal soak (5 minutes for lot change).
- 30 minute thermal soak
- Realign every 10 minutes for 4 hours setup only
- Realign every 10 minutes for 4 hours every lot

Sunil Wijeyesekera June 13, 2006

18%

Slow system thermal response impacts probe position

System continues drifting after probe card reaches thermal equilibrium

One Touch 300 mm Wafer Probing

Sunil Wijeyesekera June 13, 2006

Tester – Probe Card – Prober Thermal Loop

Thermal Stability Results

One TD card designed to minimize system thermal response

This card carries the potential to remove thermal soak and realignment times

Sunil Wijeyesekera June 13, 2006

Other elements of uptime

Alignment failures

- Special alignment features.
- Minimize thermal realignment.

Cleaning /PM

 Process improvements discussed earlier are all designed to provide a consistent probing process which minimizes cleaning.

Repair

•Minimize repair through improved contactor design.

Service close to customer (fast turn times)

Conclusion

1 TD probing is more than a scale up of previous technologies

System Level approaches are needed to overcome key probing process and throughput issues.