

Expanding Test Coverage at Sort to Reduce Overall Product Costs

FormFactor
Larry Levy, Director SoC Marketing

Agenda

- Product Studies
- Card Attributes/Life Study
- Cost of Ownership
- Next Steps
- Summary

Product Studies

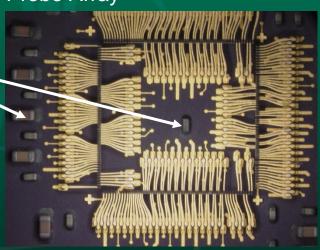
- Probe Head specification vs. Cantilever
- High speed product evaluation
 - 1.6GHz
 - Al pads
- Power management evaluation
 - 1.5 Amps
 - Copper pads
- 1st Production Version
 - Beat production schedule

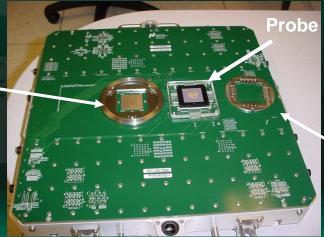
MEMS vs. Cantilever Probe Specifications

MEMS Specification

- Probe Inductance 1.1 to 1.3nh
 - Typical Probe 2.4mm in length
- Planarity +-10um
 - Actual part +/-5 um
- Probe life >1million
- Controlled Z probe launch
- Passive Components mount on Probe Head
- Current carrying capability 0.5A
 - Actual 1.5A on 2 probes

Cantilever Specification


- Probe Inductance 27nh / inch
 - Typical Probe 1 inch in length
- Planarity +-15um
- Probe life ~1million
- Controlled Z to PCB Launch
- Passive Components on PCB
- Current carrying capability 200mA with 25um tip

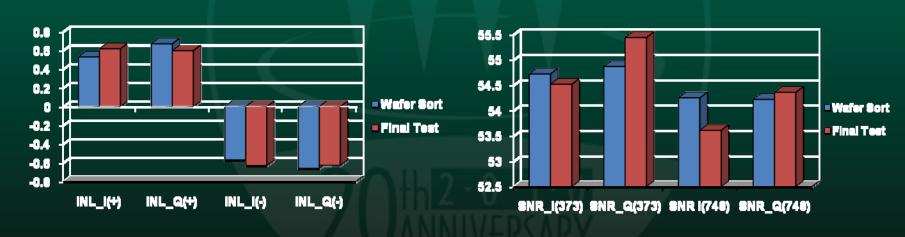

High Speed Probe Head Hardware

- Critical Passives on Probe Head
 - 48 components on ADC PH
- 78 Matched transmission line length on Probe Head
 - Includes probe length
 - Used PCB to compensate groups
- EZ to assemble and exchange probe head
 - Mechanical Assembly
 - Probe Head
 - PH Cover
- 760 Pin I/O

Probe Array

ADC / FormFactor DIB

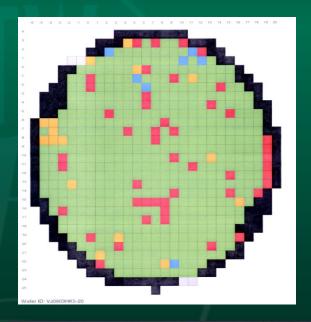
Probe Head (PH)

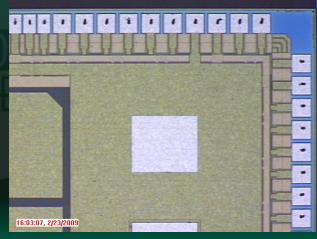

PH Cover

Good Correlation Between Sortand Final Test

Linearity Test Results

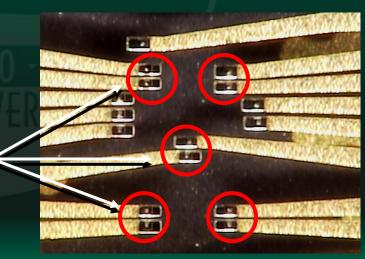
Dynamic Test Results with Input Frequency




Not able to run these tests with Cantilever card

High Frequency Product Probe Card Test Results

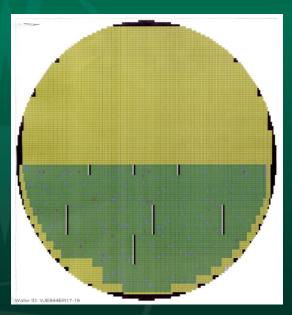
- Test Vehicle: High frequency AL pads
 - Sampling rate 1.6 Gsps .
 - AC test input frequency
 - 250 and 750M.
- Compared to currently released wafer sort solution
 - Tests only continuity, voltage level and power supply current; no AC tests.
 - ~Equivalent yield.
- Yield on MEMS probe card
 - Equivalent yield Compared to Cantilever Test List
 - SNR and Linearity yield at Sort at 6%
 - Compared SNR and Linearity test at to FT results
 - ~6% yield loss due to AC test failures (SNR and Linearity)


Power Management Device

Probe Assembly as Tested

- Compact Design
- Kelvin on 5 pins
- Components on probe head
- 136 I/O connections
- Good contact on Copper Pads
- EZ setup / EZ replacement
- Can have multiple force pins
 - 2 for and one sense pin on 180 x 68 um pad
- Probe Head Configurable
 - Multi Site

Kelvin Pins



Test Results on Power Management Device

- Single Wafer Sorted 8 times
- No probe pad damage on Copper
- Continuity stable
- RDSON Stable
- I_limit Stable
 - Tests up to 1.5amps with two force pins

DATE	1/8/2009				
LOT#	VJE844ER10 to WJE844ER17				
Wafer	19				
Sort	Bottom half wafer, 8 times				
Temperature	Room				
PCB	Modified kelvin				
Product File	Mofidied to not touching edge dies				
	Bin 1 (%)				
	VJE844ER10	96.92			
	VJE844ER11	96.75			
	VJE844ER12	96.85			
	VJE844ER13	96.88			
	VJE844ER14	96.85			
	VJE844ER15	96.99			
	VJE844ER16	96.94			
	VJE844ER17	96.81			
Note	There is no strip	issue on all 8 sorts.			

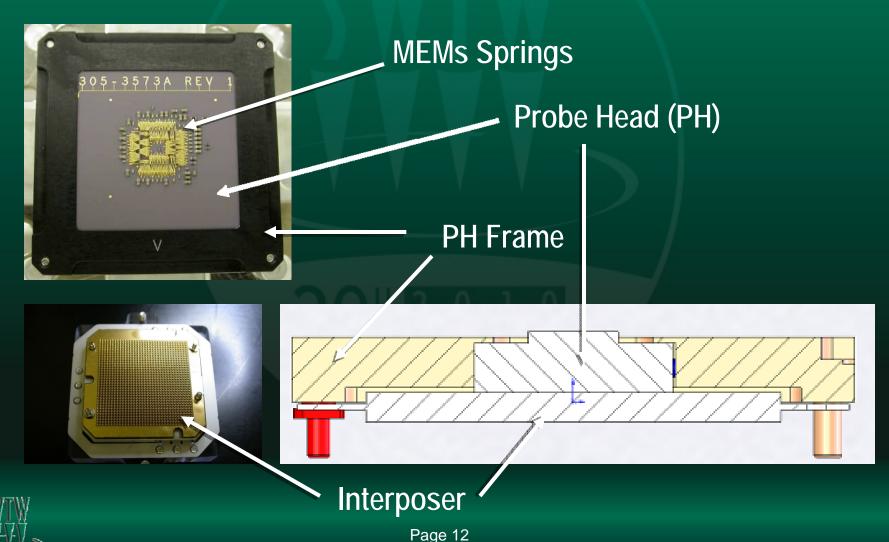
Summary Initial Product Trials

Sort Improvements using MEMS Probes

- Better signal fidelity at die
 - Bypass, bias resistors, inductors, short probes, etc.
- We can effectively test everything at wafer sort on both ADC and PM devices
- Improved probe card life
- Reduce scrap after value added steps

Tradeoffs

- Longer lead time for MEMs card
 - Ceramic lead time
- Initial cost higher

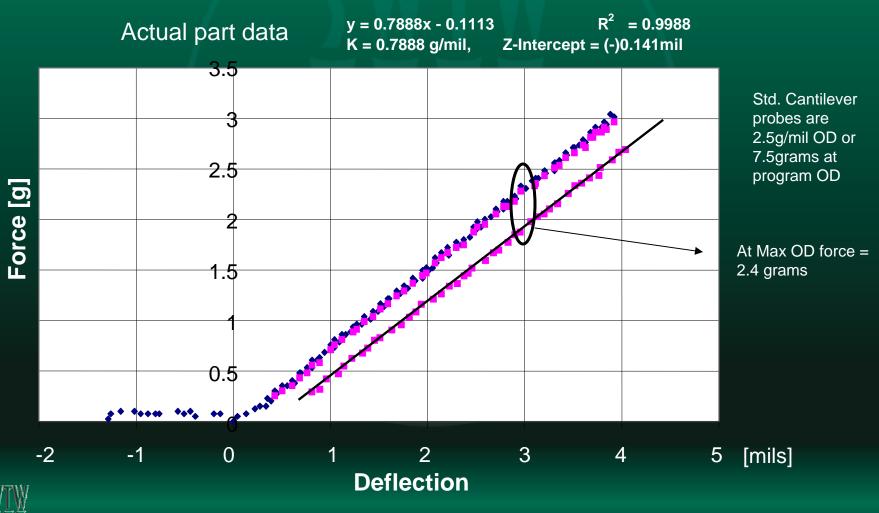


Card Attributes/Life Studies

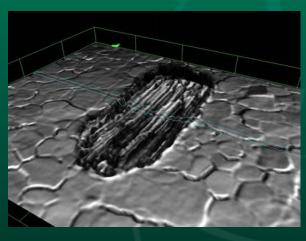
20th 2 · 0 · 1 · 0
ANNIVERSARY

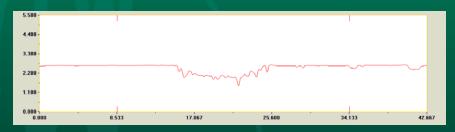
Product Supplied as an Insert Large Version with 780 LGA Points

CRES Test Probes Setup Criteria



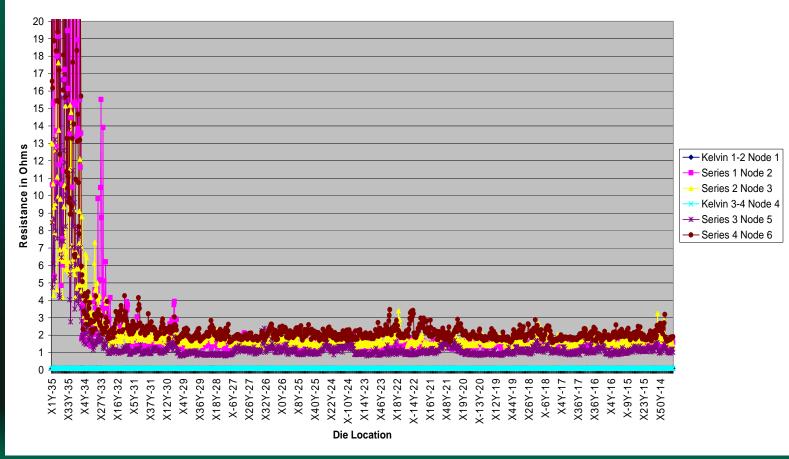
- Probe Tip 20um
- Probe Force 1.2g/mil
 - Meets SUP (Structure Under Pad) specification
- Over travel 1 to 4 mils Max
- Tested OT 2 and 3 mils
 - Optimum CRES at 3 mils
- Single touchdown




MEMS Low Probe Force

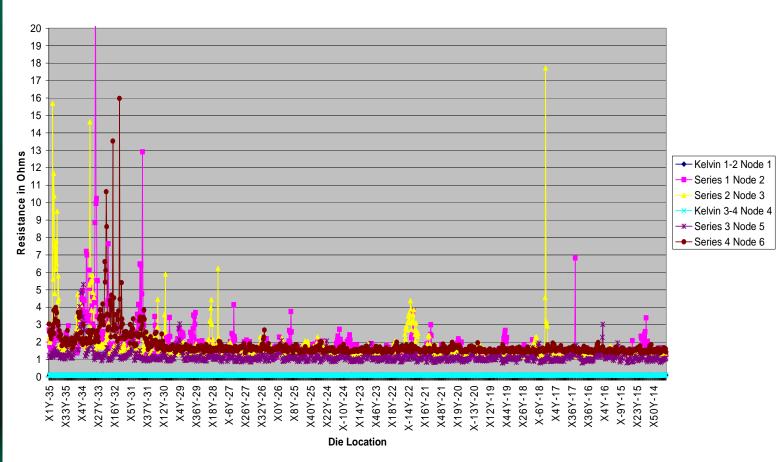
Spring Force vs. Deflection

Typical 3D Image, Line Profile (center die) and Measurements (all)

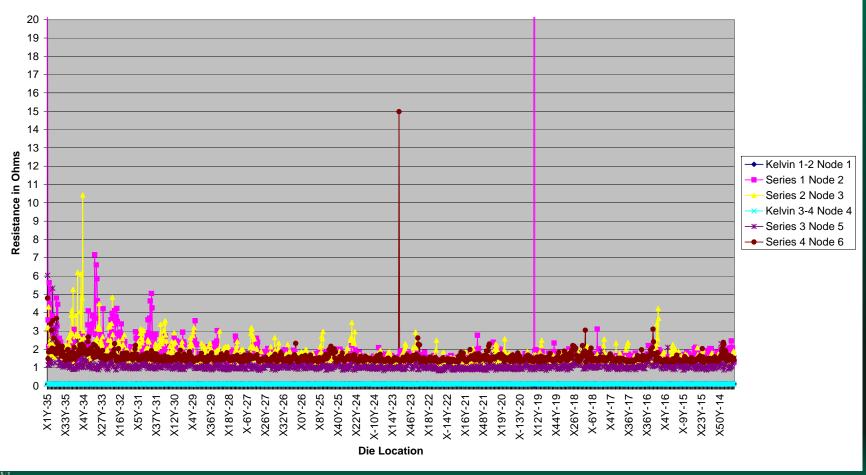

Total Average = $0.78\mu m$ (0.0308mils)

	ton vieht	too loft	40.0	u: ala t	l a fa	a a mata u	hat viabt	h at laft	hat
	top right	top left	top	right	left	center	bot right	bot left	bot
_			0.891		Λ.	1 A		/	
Average	0.74	0.6927	2	0.8438	0.7687	0.703	0.7082	0.804	0.8683
Max.	1.145	0.778	1.169	0.974	0.932	1.126	0.948	0.963	1.121
Min.	0.562	0.573	0.494	0.68	0.624	0.573	0.493	0.646	0.689
Range	0.583	0.205	0.675	0.294	0.308	0.553	0.455	0.317	0.432
			0.222	9.50	3.154				
Sigma	0.218	0.0724	4	0.1261	0.1105	0.2112	0.1535	0.1271	0.1713
			0.667						
3 Sigma	0.6541	0.2173	1	0.3782	0.3316	0.6336	0.4605	0.3813	0.514

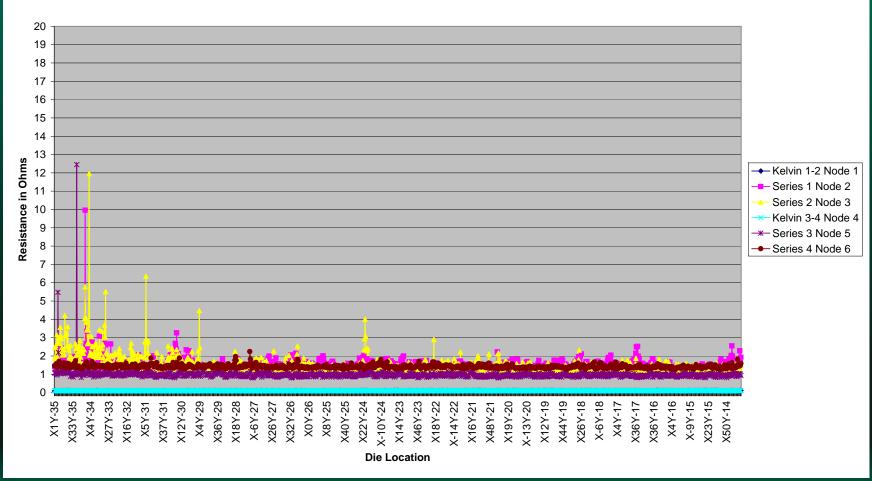

Optimizing CRES, with Cleaning and OT


Form Factor PROBE CARD
Al Plating Wafer
2 mil OT 1st 50 die, then 2.5 mil OT next 150 die, Remainder 3 mil OT
Cleaning every 200 Cycle, 25 Z only

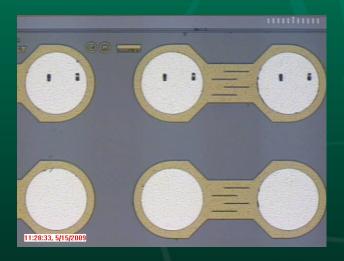
CRES with Optimized Cleaning and OT

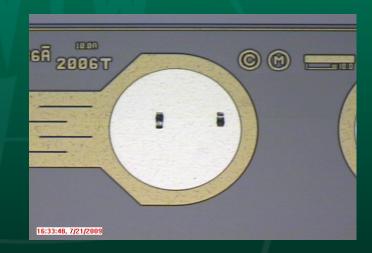


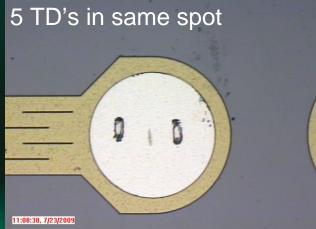
MEMS CRES after 100k + Insertions

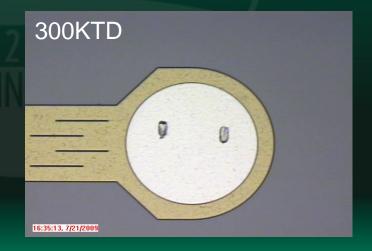

Form Factor PROBE CARD Al Plating Wafer 3 mil OD After 100k Insertions

MEMS After 300k Insertions

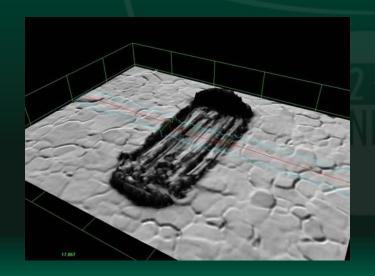

Form Factor PROBE CARD with 300k Insertions
Al Plating Wafer
3 mil OD




MEMS Probe Marks


New Card

100K TD



MEMS Life Test

- Probe card life test through
 375k insertions
- Cres Stable through 375k insertions
- Probe card wear minimal

Cost Of Ownership

20th 2 · 0 · 1 · 0
ANNIVERSARY

Key Ideas for Cost Model

 Drive more test to wafer sort to yield at lower cost point

 Shmoo Volume, Package Cost, and yield variance to cantilever sort to determine value proposition

Key Cost Drivers

- Sort Yield
 - Test Everything at Wafer Sort
- Final Yield
 - Reduce Cost of Test at Final
- Package Cost
 - Reduce Package Scrap
- Test Costs
 - Sort typically costs less than FT

Cost Model for Power Management

5% better overall yield at Final Test

10 Total Program Wafers

400 Die per Wafer

400 TD's wafer (3X3mm die, 3000 dpw, 1//)

1000000 Card Life FFI

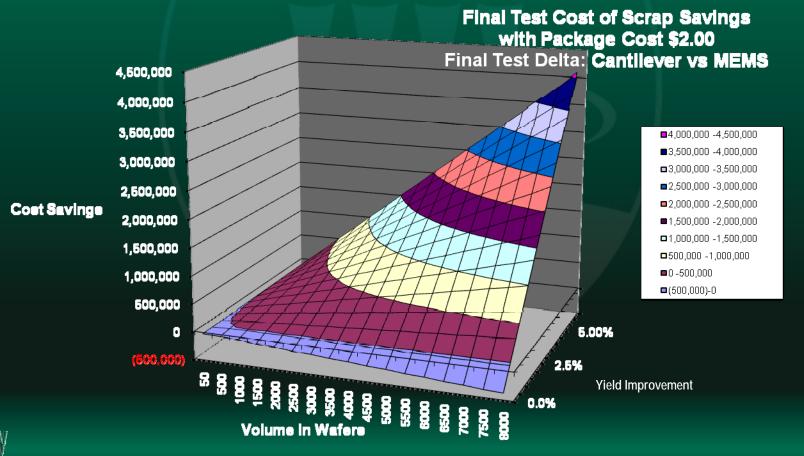
1000000 Card Life Cantiliever

2 Peak Card Usage

Probe Card Costs		Test Cell Efficiency			<u>Yiel</u>	Yield Benefit		
	Cantiliever	<u>FFI</u>		Cantiliever	<u>FFI</u>		Cantiliever	<u>FFI</u>
Initial PCB Cost	3000	3000	Total Program Wafers	10	10	Wafer Yield		
NRE	150	3500	Sort Steps	1	1	Wafer Cost	\$ 726	\$ 726
Spider/PH	1300	5000	Touch Down's/Wafer	400	400	Avg Yield	100%	89%
Cards Needed ¹	2	2	Avg Tech & Eng Labor	25	25	Program Wafers	10	10
Initial Card Cost	2750	13500	Test Cell Cost/sec	0.01	0.01	Yield Advantage		0
# Rebuilds	0	0	Total Program TD's	4,000	4,000	Yielded Die	4,000	3,560
Cost/Rebuild	1300	3000	On-Line Clean Cycle	100	100	Effective Wafer Yielded		-11%
Rebuild Cost	0	0	On-Line Clean Time	10	10	Yield Loss \$'s	\$ -	\$ (79.86)
# Repairs	5	2	Total On-Line Clean \$	4	4	FT Yield		
Avg. Repair Cost	500	1000	MTTA	25000	25000	FT Yield Loss	25.0%	9%
Repair Cost	2500	2000	Response Time (min)	15	15	Yield Loss	1,000	320
			Test Cell Wait Cost	1.44	1.44	Test Cost/Unit + Die Cost	235.56	235.56
			Off-Line Maint Freq	100000	100000	Pckg cost/Unit	37.20	37.20
			Avg Off-Line Cost	20	20	Cost of Scrap	\$272,760	\$87,392
			Cost of Off-Line Maint	0.8	0.8	Total Cost of good units	818280	883633.296
Total Cost of Scrap	\$5,250	\$15,500		\$6	\$6		\$272,760	\$87,312
Cost Benefit using FFI		(\$15,500)			\$0			\$185,448
Total Benefit/(Cost) of F	FI vs. Other							\$169,948

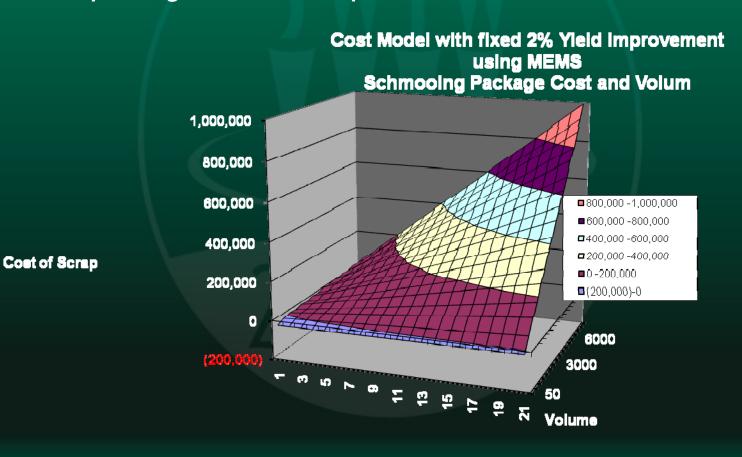
Cost Model for ADC

TDs Wafer	3000
Sort Steps	1
Total TD/Wafer	3000
Card Life FFI	1000000
Card Life Other	500000
Peak Card	
Usage	2


Received a \$132K cost benefit by switching to MEMS

Probe Card Costs						
1 1 VA V V V V V V V V V V V V V V V V V						
<u>Cantiliever</u>	<u>FFI</u>					
\$3,000	\$3,500	Initial PCB Cost				
\$150	\$3,500	NRE				
\$ 1,300	\$ 5,000	Spider/PH				
2	2	Cards Needed1				
\$ 5,750	\$17,000	Initial Card Cost				
6	2	#Rebuilds				
\$ 1,300	\$ 5,000	Cost/Rebuild				
\$ 7,800	\$10,000	Rebuild Cost				
5	2	#Repairs				
\$500	\$1,000	Avg. Repair Cost				
\$2,500	\$2,000	RepairCost				
\$16,050	\$29,000	Total Probe Card Spend				
	Yield Benefit					
<u>Cantiliever</u>	<u>FFI</u>					
		Wafer Yield				
1,500	1,500	Wafer Cost				
3,000	3,000	Die Per Wafer				
98.0%	98.0%	Base Wafer Yield				
0.0%	2.0%	Underkill Identified at Sort				
98.0%	96.0%	Final Sort Yield				
1,200	1,200	Program Wafers				
3,528,000	3,456,000	Yielded Die				
\$36,000	\$72,000	Costof Yield Loss				
		FT Yield				
2.0%		Underkill Passed on from Sort				
96.0%	98.0%	Final Sort Yield				
141,120	69,120	Pkg Part Loss				
\$0 .42	\$ 0.42	FinalTestCost				
\$ 0.10	\$0.10	Package Cost				
\$2.00	\$2.00	Die Cost				
\$3 55, 6 22	\$ 174,182	Costof Scrap				
\$3 91, 62 2	\$ 246,182	Costof Yield Loss				
\$4 07,672	\$275,182	Yield Loss + Probe Card Spend				
	\$ 132,490	(Cost)/Benefit of MeMs				

Cost Model for ADC


With > 0.5% yield improvement, MEMs provides cost savings at any wafer volume

Cost Model for ADC

At \$0.01 package cost MEMS provides cost benefits at >500 wafers

Package Cost

Next Steps

- Carry on to 1 million insertions or breaking point
 - Compare to Cantilever life
- Vary cleaning process to optimize cycles between cleaning
 - By process
- CRES Study with Higher current
- Release to High Volume Manufacturing

Summary

20th 2 · 0 · 1 · 0
ANNIVERSARY

MEMS Probes Support

- MEMS probes enable full electrical test at Wafer sort
 - Better FT yields and less scrap
 - Initial product showed 6% FT yield improvement
- Supports MCM, and SIP programs
 - Testing Everything at Wafer Sort improves module yields
- Improve Known Good Die Test capability and sales
- EZ Implementation in manufacturing
- High Current Capable over 650ma per pin
- High Speed capable over 1.6ghz test limited by product

Acknowledgements

- Dale Anderson
- Jessica Nguyen
- Shalabh Goyal
- Hemang Dave
- John Hsia
- Dane Granicher –FormFactor

