

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

Review of New, Flexible MEMS Technology to Reduce Cost of Test for Multi-site Wire Bond Applications

Dan Stillman

Texas Instruments Ben Eldridge FormFactor

Overview

- Project Background & Objective
- Probe spec FFI
- Data Results TI
 - Planarity
 - Thermal agility
 - Pad damage
 - Cres performance
 - Yield performance
 - Life time data
- Summary

Background

- Previously evaluated and released to production a new MEMS vertical technology for flip chip bumps
 - Results presented at SWTW 2014 (S07_01_Stillman_5-28-2014)
- For wire bond applications, wanted to combine the strong operational performance of MEMS cantilever technology with the pad layout flexibility and repair – ability of MEMS vertical technology

 Leverage success of production worthiness of flip chip applications to expand design coverage for wire bond applications

Motivation From Previous Work

Conclusion from 2014 SWTW presentation

- Low-force MEMS Probe Card Technology, such as FormFactor's K-Probe, demonstrated several advantages for solder flip-chip probing in high-volume production
 - Production stability for high pin counts, > 20,000 pins
 - Scalability for multi-DUTs probing, >= 8 DUTs
 - Long life-time, >2M touchdowns demonstrated
 - Controlled Cres in production

 As flip-chip pitch continues to shrink, requiring finer vertical probes, MEMS probe technology is proven to be a viable path to continue lowering cost of test

• Extend the MEMS vertical spring technology to Al pad probing for wire bond applications

Project Objective

- Evaluate, then release to production a new MEMS vertical probe technology for Al pads
 - Low force probe without sacrificing CCC
 - Contact stability tight planarity and CRES
 - Thermal Agility –probe card stability with wide temperature range of -40°C to 140°C
 - Minimal pad damage and ILD cracking
 - Production support with field replaceable probes

Basic Spring Performance

Full Probe cycle of being compressed and released

Probe Force vs. Over Travel

Data after 1.5M cycles

Stillman/Eldridge

June 7-10, 2015 2-0-1-5 SW Test Workshop

Basic Spring Performance ISMI Current Carrying Capacity performance of low force vertical spring

Data after 1.5M cycles

Stillman/Eldridge

June 7-10, 2015

Qualification Results

June 7-10, 2015

Auto Z Performance

Probe card layout – x8, 1256 springs, 608 mm² array

Stillman/Eldridge

June 7-10, 2015 2-0-1-5 SW Te

SW Test Workshop

Thermal Agility

• Once the card gets to temp, thermal movement is very stable

Stillman/Eldridge

June 7-10, 2015 2015

SW Test Workshop

Minimal Pad Damage

• Probing at 80um OT

Stillman/Eldridge

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

AVI Performance

(Automated Visual Inspection of Pad Damage)

AVI Loss SW9 K-Spring vs ST8 VPC

Stillman/Eldridge

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Dielectric Cracking & Punch Through

11x Touchdowns at 100um OT

Pad structure after Al leach No dielectric cracking found Parametric cracks found during wafer de-processing.

Punch Through per TD count

TD Count	Punch through found	Raw punch through per parts per million
3x – 10x	NA	NA
11x	0	0
	22007	1200622006220882

Results: No dielectric cracking found with 100um OT on F05 Saturn 60 wafers - Pass

Max CRES – Production Data

2-0-1-5

SW Test Workshop

June 7-10, 2015

Stillman/Eldridge

14

CRES Over Time

25TH ANNIVERSARY

2-0-1-5

SW Test Workshop

June 7-10, 2015

Stillman/Eldridge

15

Yield Comparison

Stillman/Eldridge

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Life Time Data

K Spring Life Time Test

Initial projects of ~1M TD lifetime in production

Stillman/Eldridge

June 7-10, 2015

SW Test Workshop

Summary

Production performance stand out

- Production performance
 - Planarity
 - Thermal agility over wide temperature range
 - Minimal pad damage, stable AVI and no ILD cracking
 - CRES and Yield
 - Lifetime

 Compelling new technology to replace existing high volume technologies

• Flexible MEMS Technology to Reduce Cost of Test for Multi-site Wire Bond Applications

Acknowledgement

- Al Wegleitner, Texas Instruments
- Frank Meza, FormFactor
- Doug Shuey, FormFactor
- Kevin Hughes, FormFactor