

International Technology Roadmap for Semiconductors

ADVANTEST.

Dave Armstrong – Advantest Ira Feldman – Feldman Engineering Marc Loranger - FormFactor

- Who are we?
- Why a roadmap?
- What is the purpose?
- Example Trends
- How can you help?
- Summary

Armstrong-Feldman-Loranger

ITRS Team

Large ITRS Team

- More than a 1,000 professionals
- Over 100 companies
- 16 Working Groups

• Test Working Group

- More than 70 professionals
- More than 45 companies

Three of us are presenting today

- Dave (Advantest) Test TWG Chairman
- Marc (FormFactor) Probing Team Leader
- Ira (Feldman Engineering) Communications

Armstrong-Feldman-Loranger

June 8-11, 2014

Why a Roadmap?

- The ITRS is generated each year to report on the technological fundamentals of our industry.
- In addition, by extrapolating on the trends inherent in today's semiconductor technology we identify disconnects and discuss possible approach to overcome these challenges.
- Through this effort we all can get a better sense of the path of least resistance and align our plans and standards in a fashion which is most likely to succeed.

Armstrong-Feldman-Loranger

June 8-11, 2014

What Is and What Isn't the ITRS

What Is the ITRS

- The combined expert opinion by this team.
- The results of many different technology models.
- A "best guess" of where the industry is heading for the next 15 years.
- A highlighting of disconnects and significant challenges.

What Isn't the ITRS

- It doesn't implement or define Moore's Law – it just tries to predict how things will likely trend.
- A commitment from the involved companies to do what is reported.
- Specific solutions or prescriptive.

Armstrong-Feldman-Loranger

June 8-11, 2014

ITRS Process

Entire Team Publishes a New Roadmap Yearly

> Working Group Discusses Challenges

Sub-Team Analyzes Implications

> Implications Discussed with Other Working Groups

Sub-Team Reconciles Feedback from Other Groups

Armstrong-Feldman-Loranger June 8-11, 2014

Test Complexity Drivers

Device trends

- Increasing device interface bandwidth
- Increasing device integration (SoC, SiP, MCP, 3D packaging)
 - Homogenous & heterogeneous dies \rightarrow functional disaggregation
- Integration of emerging and non-digital CMOS technologies
- Complex package electrical and mechanical characteristics
- Device characteristics beyond one sided stimulus/response model
- 3 Dimensional silicon multi-die and Multi-layer
- Integration of non-electrical devices (optical, MEMS, etc.)
- Fault Tolerant Architectures and Protocols

Industry trends

450 mm wafer transition

Date = When in Production

ITRS 2013 Overview: Figure 1a A Typical Technology Production "Ramp" Curve (within an established wafer generation)

Armstrong-Feldman-Loranger

June 8-11, 2014

Wafer Probe Requirements

Parameter	MPU & ASIC	DRAM	NAND	RF & AMS	LCD Drivers	CIS		
Wirebond – inline pad pitch	Х	Х	Х	Х	Х	Х		
Wirebond – stagger pad pitch	Х			Х	Х			
Bump – array pitch	Х			Х				
I/O Pad Size	Х	Х	Х	Х		Х		
Wafer Test Frequency	Х	Х	Х			Х		
High Speed I/O Frequency	Х				Х	Х		
Wirebond - Probe Tip Diameter	Х	Х	Х	Х	Х	Х		
Bump – Probe Tip Diameter	Х			Х				
Probe Force	Х	Х	Х		Х	Х		
Probe (Active) Area	Х	Х	Х	Х	Х	Х		
# of Probes per Touchdown	Х	Х	Х	Х	Х	Х		
Maximum Current / Probe		Х	Х	Х	Х	Х		
Maximum Resistance		Х	Х		Х			
Armstrong- Feldman- June 8-11, 2014 June 8-11, 2014 June 8-11, 2014								

Loranger

Parallelism Trend

DRAM Parallelism Roadmap Changes vs. time

Armstrong-Feldman-Loranger

June 8-11, 2014

SoC (MPU) Bump Pitch Trend

Technology shift in 2012

Armstrong-Feldman-Loranger

June 8-11, 2014

Prober accuracy vs. Pad size

	20)13	2014		2015		2016		2017		2018	
DRAM												
Wirebond - inline pad pitch	55		50		45		40		40		40	
I/O Pad Size (μm)	х	Y	х	Y	х	Y	х	Y	x	Y	x	Y
Wirebond	45	45	40	45	40	40	35	40	35	40	35	40
Prober												
XY Accuracy(Probe to Pad) [um]	2	.0	2.0		2.0		2.0		2.0		2.0	
Z Accuracy(Probe to Pad) [um]	5	.0	5.0		5.0		5.0		5.0		5.0	
Chuck Planarity [+/-um]	7	.5	7.5		7.5		7.5		7.5		7.5	

 Prober roadmap is not tracking with decreasing pad sizes

• An especially difficult issue for Full Wafer Contactor probe cards

Armstrong-Feldman-Loranger

June 8-11, 2014

Next Challenges for Probe Cards

- Decreasing pad / bump sizes and pitch
- Increasing parallelism SoC and Memory
- Increased use of die for MCP, 2.5D and 3D integration will drive more wafer sort
- 2 sided probing
- Testing stacked devices (e.g. HBM)
- MEMS and sensor sort test
- Cost of test as a driver

Armstrong-Feldman-Loranger

June 8-11, 2014

Opportunities for Involvement! Download ITRS data at: http://www.itrs.net/Links/2013ITRS/Home2013.htm

 Provide feedback on test data at: http://j.mp/ITRSTestSurvey

Sign up: dave.armstrong@advantest.com

Armstrong-Feldman-Loranger

June 8-11, 2014

Summary

Great Tool

Well accepted independent industry wide reference

Challenges

Requires broad-based inputs

Track potential disruptive technology

Help Us

– Get Involved!

Armstrong-Feldman-Loranger

June 8-11, 2014

