Use of Resource Sharing Techniques to Increase Parallel Test and Test Coverage in Wafer Test

Michael Huebner
FormFactor, Inc
Motivation

• With increasing test times/DUT and die per wafer, test time/wafer and test cost were increasing
 – Increase of parallel test was identified as the solution to get out of this dilemma
 – Impact on test coverage, yield needed to be minimized

• DFT and TRE were developed to enable higher parallel test
Introduction

• **Test Resource Enhancement = TRE**
 – Sharing of tester resources between multiple DUTs using passive components.

• **Advanced TRE**
 – Sharing of test resources using active components and having the ability to connect and disconnect DUTs from the tester resources
 – Other active circuits to increase tester capabilities
 • Current, Frequency ...
Signal TRE - Principle

- Tester driver resources are used on multiple DUTs at the same time
 - Typical signals: CLK, address, other controls (WE, CS..)
 - Tradeoffs: Signal integrity and “dead soldier” impact
 - Optimize sharing pattern to avoid sharing over the wafer edge
 - With and without resistive protection (OhmGuard™)

X4 Shared Control

- OhmGuard
- Dead Soldier
Signal TRE – Things to consider

- TRE impacts the signal integrity (rise time, etc.)
 - Decreasing rise time with higher sharing factor
Signal TRE – Things to consider

- Dead soldiers are impacting signal waveform
 - Critical: Isolation resistor value and number of shorts
 - Which signal level is required?
Signal TRE – Things to consider

• Strategies to minimize dead soldier yield loss:
 – Adjust TRE/sharing pattern to wafer map to reduce potential yield loss by e.g.:
 • Minimize sharing across the wafer edge by smart layout of the sharing pattern
 • All DUTs of one shared group should be either completely on the wafer or all off the wafer during one touchdown
 • Combine DUTs which step off the wafer in same step in one group
 – Highest sharing inside the wafer – reduced sharing at the wafer edge – if resources are available
Signal TRE – Things to consider

- Example for design of shared groups minimize sharing across the wafer edge

- Step out on 2nd TD
- Step out on 3rd TD
A-TRE: Power Supplies

- Power Supply sharing requires switches to connect and disconnect DUTs from tester power supply
 - Disconnect DUTs during current measurements
 - Disconnect bad DUTs with high current from shared group
 - Max sharing is limited by current capability of power supply and consumption of DUT
 - Separated switches for Force and Sense are used in case of low power devices to minimize voltage drop (as shown below)
A-TRE: DC-Signals

• Sharing of DC-resources requires switches to disconnect DUTs from tester DC-resource
 – X-DUT DC-TRE
 – IN-DUT DC-TRE

DC-Driver or PMU

DUT1 DUT2 DUT3 DUT4

x4 X-DUT DC-TRE
A-TRE: DC-Signals

• X-DUT DC-TRE
 – Forcing of voltage to DC-pads on the DUT
 • All switches closed
 • Individual switch control is required for disconnection of bad DUTs which would pull down signal level
 – Voltage/current tests or chip individual voltage trimming
 • Only one chip is connected at the same time
 • Sequence control is sufficient in this case
 – Different signals can be forced or measured at the same time
A-TRE: DC-Signals

• **IN-DUT DC-TRE**
 – One DC-resource is connected to multiple DC-signals on the same DUT
 – Sequential control is sufficient – no need for individual DUT control
 • Easy to implement and to control
 – Less flexible in terms of test capability – Force or measure only one signal at the same time
A-TRE: AC-Signals

- TRE on AC signal is enabled through AC-switches
 - Perfect isolation – better than resistive isolation
 - Share control lines between different signals on one DUT
 - Pull-up/down of signals
A-TRE: I/O-Signals

- AC switches on I/O channels can be used to increase parallel test without on-chip I/O compression
 - Parallel Write and Sequential Read controlled by switches
 - Used for Flash testing where Write takes longer than Read, overall test time benefit can be achieved
 - Also used for WLBI when individual Read back is not required in every stress cycle
Typical Application: DRAM

• Typical DRAM test scenario
 – Signal TRE x4/x6/x8 or higher
 – I/O compression
 – DC-TRE
 – PPS-TRE

<table>
<thead>
<tr>
<th>DUT1</th>
<th>DUT2</th>
<th>DUT3</th>
<th>DUT4</th>
<th>DUT5</th>
<th>DUT6</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- DC-TRE switches
- Power-TRE switches

X6 Shared Controls 10-15
Design For Test/DFT

• DFT and TRE were developed to increase parallel test

• DFT- examples:
 – I/O compression: 4 or 2 or 1 I/O mode (out of 16 I/Os)
 – Address compression test modes to reduce the number of driver channels needed to control the DUT
 – Internal DC-signal MUX to reduce number of tester resources needed

• Tradeoffs: Die area, yield, test time impact, time to market
Typical Application: DRAM

- **Benefits of parallel test**
 - Test time and test cost per wafer are reduced dramatically
 - Scenario below shows change from 64DUT to 1024 DUT on most commonly used DRAM testers
 - Test time overhead and higher probe card price are considered as well
Typical Application: Flash

- **Total isolation: All signals can be disconnected**
 - I/O and data signals
 - DC-signals
 - Power

![Diagram showing connections between DUTs in different groups](chart)

To other DUTS in Signal TRE group

To other DUTS in DC TRE group
A-TRE for SOC

- Run for high parallel test just starting - may not be possible for all applications due to tester limitations
 - Easier for Memory like test problems like Embedded Memory on SOC

- Technology developed for DRAM/Flash can be used for
 - Increase of parallel test
 - Increase of test coverage in case there is a lack of certain resources (or current?)
 - New test features can be implemented on old testers extending the useful life of test systems
Need More Current?

• Voltages level are going down – current is going up

• Tester power supplies provide max current at max voltage: e.g. 0.8A @ 5V
 – Typical voltages are 1.5V and below

• Use DC/DC converters to create higher current at lower voltage
 – Using PPS-TRE switches to distribute new more capable power supply channels (with current trip function?)
A-TRE Components

• **Requirements:**
 – Size matters – highest integration needed
 – High temperature up to 125°C
 – Serial control for complex control schemes
 – Low current demand

• **Typical components used:**
 – FETs and analog switches
 – PhotoMOS – limited by size and current
 – Custom ASICs – switches with serial control
 – Controller: CPLDs, FPGAs, Microcontroller
Roy’s Law

The number of switches on a probe card doubles every second year.
How to control A-TRE?

• Example of A-TRE control using SPI bus from tester and serial bus on probe card
Guiding Principle of TRE

• **Start with your testing problem**
 – How many resources are needed for the given device and test needed to be performed?
 – How many tester resources with the required capability are available?

• **In case there is a shortage of resources or capability what can be done to overcome this shortage?**

• **On the probe card you have the flexibility to boost your tester performance and overcome its limitations**
Achievements

- Typical high end cards for DRAM
 - 1000 DUTs
 - 2 power switches and 2 sense switches per DUT
 - 4 DC-TRE switches
 - Total of 8000 switches and 4000 capacitors
 - Very high component density
Summary

• TRE and Advanced TRE have been developed to extend test capability for higher parallel test and increasing test coverage
• Today high volume production test of most DRAM and NAND Flash is using a combination of TRE, A-TRE and DFT
• Other application can also profit from using the methods developed
• Many things are possible on a probe card to respond to changing device test requirements.
Acknowledgements

• Thanks to the following individuals for their contributions in the area of A-TRE
 – Nick Sporck
 – Roy Henson
 – Susumu Kaneko
 – Marc Loranger