

SW Test Workshop

Semiconductor Wafer Test Workshop June 7 - 10, 2015 | San Diego, California

Minimizing Parametric Probe Card Stray Capacitance

Larry Levy & Edwin Soler FormFactor Inc & GLOBALFOUNDRIES

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

Stray Capacitance Definition

- Stray capacitance is unintended and unwanted capacitance in a circuit.
 - Capacitance doesn't exist only within capacitors. In fact, any two surfaces at different electric potential, and that are close enough together to generate an electric field have capacitance

(Wikipedia)

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

Why is Stray Capacitance Important for Parametric Testing?

Capacitance is used for process monitoring in some tests

Example :

Critical Capacitance measurement example, signature measurement of the technology

Classic measurement lpoly = length of poly = _____

capacitance of poly finger capacitance

 Aggressive test structure designs (space limited test structure-pad sharing) becoming less tolerant to probe card stray capacitance

Measuring lower capacitance values in new advanced nodes

Need the measurement to be more accurate

- Some critical measurements are in the 100's of fF
- Need tighter distribution as well

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

Background

• Why lower capacitance became more important?

For Case Study Customer A
some pads are tied together in
the wafer

 In the case of GLOBALFOUNDRIES it was a desire to more closely match or improve on the existing technology

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

Engineering Stray Capacitance Measurement Method • Agilent E4980A

Very important to have an engineering capability that correlates to testers in the field

Preset	Agilent E4980A 20 Hz - 2 MHz Precision LCR Meter			
Trigger	LIEAS SETURY USER COMMENT FUNC CP-D RANSE AUTO FREQ 1 H/Hz BIAS 0 V LEVEL 1 V NEAS TIRE HED TRIG INT AVG 1 ALC OFF VOC NON OFF DOR RNS AUTO DC NON OFF	HEAS SETUP CORREC TION LINIT TABLE		
DC Source	DCI ISU OFF TRIG DLY 0 s DCI INS 20 µA STEP DLY 0 s DC SRC 0 V BIAS POL FIX DEV A OFF REFA 0 F B OFF B 0 Use softleeus to select			
	Recall A) Recall B Sever System	25TH AN	NIVERSARY	Calibration off set 10

2-0-1-5

Sw lest workshop

June /-10, 2015

Probe to probe

Capacitance of Probe Card Components

Interchangeable Platform Adds Complexity

Probe Card Stray Capacitance

 Traditionally stray capacitance is measured from pin to pin in air and on the wafer

Customarily pins have been designed to come from opposite sides for course pitch/larger pads

For tight pitch and small pads it is becoming more common for springs to come from one side to optimize probe mark alignment over time

Prober Card Break Down Probes

25 pin 80um pitch design

Single (Beam pitch Narrow)

Dual (Beam pitch Wide)

Beam to Beam clearance has the largest impact

Probe Card Break Down Interchangeable Insert Unit

Max 682 fF Average 87.9 fF

June 7-10, 2015

Probe Card Break Down Mother Board

Max 300 fF Average 37.9 fF

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Full Probe Card of Stray Capacitance 25pin, 80um pitch, Single Direction Using Standard Design Rules

Max 980 fF Average 126 fF

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Stray Capacitance Probe Card Component Summary

Components

- Probes have minor contribution
- Focus on MB
- Focus on Insert
- Experimental Inserts were designed with both dual and single direction as well as a new MB
 - Redesigned to minimize capacitance and tighten distribution
 - Keeping the goal of maintaining current cost/price

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

Case Study Customer A Problem Statement

Outliers are pads tied together in the wafer

Original Full Probe Card of Stray Capacitance

Using Standard Design Rules (25pin, Single Direction)

Probe Card Break Down Interchangeable Insert Unit

Max 85% reduced Average 89% reduced

E

Max	682 fF		11 vs 12	85 fF	Max	105 fF		11 vs 12	68 fF	
Average	87.9 fF		10+11 vs 12+13	812 fF	Average	10 fF		10+11 vs 12+13	164 fF	
			10+11 vs 12+13+1	4 875 fF			-	10+11 vs 12+13+14	164 fF	

2-0-1-5

SW Test Workshop

June 7-10, 2015

Probe Card Break Down Mother Board

Average 84% reduced

<u>*Max was not improved much due to cost</u> restrictions (3 higher capacitance)

Max	300 fF		11 vs 12	0 fF		Max	297 fF		11 vs 12	0 fF
Average	37.9 fF	1	10+11 vs 12+13	476 fF		Average	6.18 fF		10+11 vs 12+13	34 fF
		-	10+11 vs 12+13+14	476 fF					10+11 vs 12+13+14	34 fF
]11	ne 7-10 2015	25TH ANN	IVERSA	RY SM	/ Test Wo	rkshon		

Full Probe Card of Stray Capacitance Improved Design Rule(25pin, Single Direction)

Max	335 fF	1	1 vs 12	68 fF
Average	16 fF	1	10+11 vs 12+13	198 fF 🚽
		1	10+11 vs 12+13+14	198 fF

Max 66% reduced Average 87% reduced

Full Probe Card of Stray Capacitance Improved Design Rule(25pin, Dual Direction)

Max	295 fF	11 vs 12	18 fF
Average	11.8 fF	10+11 vs 12+13	121 fF
		10+11 vs 12+13+14	172 fF

Max 70% reduced Average 91% reduced

Case Study Customer A Summary

- We were able to drastically reduce full card stray capacitance
 - Although the bridged probes still demonstrated higher capacitance, they were now within acceptable limits

						Dual		Single
Stray	Capacitance (unit:fF)					Duur		Single
Meas	urement: Open circuit							
	Sample	Cantilever	TK5613B		T	V1	TV2	
	Measurement By	Custo	mer A					
Evaluation CH	Full CH Max			980	295	70%	335	66%
	Full CH Average			126	11.8	91%	16	87%
	11 vs 12	22	107	85	18	79%	68	20%
	10 + 11 vs 12 + 13	44	1274	1288	121	91%	198	85%
	10 + 11 vs 12 + 13 +14	35	1313	1351	172	87%	198	85%

Case Study Customer A Final Results

Improved Design

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

GLOBALFOUNDRIES Quality Policy

Quality is a way of life

- GLOBALFOUNDRIES will exceed our customers' expectations through the dedication and continuous improvement efforts of our employees. To do so, our employees embrace and adhere to the following principles:
- Customer First
- We are committed to best-in-class service to our customers. "Customer First. Quality Always."
- •Committed People
- We take ownership in creating a quality culture where our people strive to do "First Time Right."
- Continuous Improvement

We strive for zero defects through continuous improvement in our processes, products and services of the Workshop 28

GLOBALFOUNDRIES Problem Statement

Standard FFI MEMS card has higher capacitance

22 Pin Single Direction Redesigned Measured at FormFactor

25TH ANNIVERSARY

SW Test Workshop

June 7-10, 2015

30

GLOBALFOUNDRIES Evaluation

 GF does testing/qualifications at different frequencies during probe card validation

Different devices have different capacitance/conductance ranges

 Industry standard Capacitance and Conductance are (Test Freq):

> 1 fF to 1.2 nF and 10 nS to 7.5 mS (1 MHz) 1 fF to 10 nF and 1 nS to 6.3 mS (100 KHz) 1 fF to 100 nF and 0.1 nS to 6.3 mS (10 KHz) 10 fF to 100 nF and 0.1 nS to 0.63 mS (1 KHz)

> > June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Capacitance Comparison-Frequency 1 KHz

Measured with 25 channel tester

June 7-10, 2015

Capacitance Comparison-Frequency 10 KHz

Measured with 25 channel tester

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Capacitance Comparison-Frequency 100 KHz

Measured with 25 channel tester

June 7-10, 2015 25TH ANNIVERSARY SW Test Workshop

Capacitance Comparison-Frequency 1 MHz

Measured with 25 channel tester

2x card shows same chart

June 7-10, 2015

SW Test Workshop

1 MHz Plot Shows Improvement in Range and Distribution

June 7-10, 2015 2-0-1-5

- Definition Of Capacitance
- Importance of Minimizing Capacitance
- Background
- Capacitance of Probe Card Components
- Case Study Customer A
- GLOBALFOUNDRIES Case Study
- Summary

Stray Capacitance Summary

- Prior to doing parametric test a procedure is usually performed to null out the capacitance produced by the tester and probe card.
 Despite this effort, uncompensated probe card and tester stray capacitance can still be a problem
- The uncompensated stray capacitance can/did become a significant percentage of the final measurement, particularly with regard to leading edge technology test requirements
- By localizing the values of stray capacitance produced by the main components of the probe card we were able to reengineer the card, greatly reducing the stray capacitance and tightening the distribution while addressing the impact of potential structures in the wafer.
- Less capacitance is always better
 - Further improvement is possible if cost is not an issue

Acknowledgements

• IBM

– Jack Cassels, Ron Feroli, Lou Medina

GLOBALFOUNDRIES

Alan Romriel, Edwin Soler, Ronie Geronimo, Jackie Ngo-Hatchie, Carrie Demers

Keysight Technologies

– Goto-san

FFI Japan

– Yoshida-san, Kawamata –san

Thank You 2-0-1-5

Author

June 7-10, 2015 2-0-1-5 SW Test Workshop