

3D and MEMS

Vertical MEMS Probe Technology For Advanced Packaging

Amy Leong

Senior Vice President, Marketing FormFactor Inc

1/28/2016

Agenda/Outlines

Rapid recent adoption of advanced packaging

- Copper pillar and 2.5D/3D ICs
- Customers relying on "more-than-Moore" advances
- Presents significant challenges for wafer test and probe
 - Layouts are fully-populated 2-D arrays at <100um pitch
 - Contacts are delicate structures made of new and diverse materials
 - Industry requires a "Moore-like" cost and time-to-volume trajectory
- Solutions rely on a synthesis of technologies from diverse areas MEMS processes, materials science, automation, etc.

Transistor Scaling and Cost Reduction Trajectory Slowing

"More-Than-Moore" Advanced Packaging Accelerating Below 10nm

2.5D IC and 3D IC Technologies are growing

Source: Gartner, New Venture Research, McKinsey

3D IC/2.5D Silicon Interposer Application & Device Drivers

Cu Pillar Enables 3D Fine-pitch Memory Interface and 2.5D Silicon Interposer

- High-end Applications
 - Servers
 - High-end computing
 - Data center
 - Game consoles
- Devices
 - FPGA
 - High-end Memory
 - HBM
 - Wide I/O
 - HMC
 - GPUs
 - CPUs

Monolithic Device

First 3D FPGA: Virtex-7 20007 Based on Stacked Silicon Interconnect

First Heterogeneous 3D FPGA: Virtex-7 H580T Based on Stacked Silicon Interconnect

Samsung DDR4 3D DRAM Module

Nvidia Pascal Graphic Module

Intel "Knight Landing" Using HMC

Wafer Probing Challenging

Smaller Cu Pillars at Finer Pitch Require High Contact Precision and Low Force

	Solder Bump	Cu Pillar Dimension Roadmap				
Pitch (um)	150um	130um	100um	80um	60um	40um
Diameter (um)	80 um	60-70um	40-50um	25-30um	20-25um	20-25 um
Height (um)	80 um	75 um	60 um	50 um	40 um	35 um

Cu Pillar Probe Mark Photo Gallery

Pass Good Probe Mark on 30um Cu Pillar

<u>No Pass</u> Cu Pillars with Sheared Solder Cap

<u>No Pass</u> Misaligned Probe Tip

<u>No Pass</u> Probe force too high

Mechanically Formed Vertical Probes Give Way to MEMs Probes Below 100um Pitch

- Mechanical Tolerances for Stamped probes are inferior to MEMs structures
- Guide Plate Mechanical Drilling is Inferior to MEMs Guide Plate Formation Technology
- Tip Geometries are Poorly Controlled by Stamping and Forming Versus MEMs fabrication
- Contact Materials are Limited to Bulk Alloys for Mechanical Probes but are By Design for MEMs probes.
- Stable Contact at Low Probe Forces is Enabled by MEMs contact Design

Korea2016

FormFactor 80um Pitch Grid-array MEMS Probe

FormFactor 40um Pitch Grid-array MEMS Probe

Dimensional Control Improved With MEMS-Based Fabrication Processes

For Sub-100um Pitches, MEMS-based Dimensional Control Offers Significant Advantages

Reduction in as-produced dimensional errors can be used in different ways

- Larger probe for a given design pitch for 80um example above, Δ =25um
 - Better electrical performance (current, impedance) and longer lifetime
- Smaller minimum-viable pitch for a given probe
 - Improved design coverage and extendibility
- Higher probe/GP component yield for cost reduction

Composite MEMS Structure Helps to Carry More Current Through An Ever-Shrinking Probe Cross-Section

- Geometries are getting smaller, while current densities are increasing
- Composite MEMS probes made from different material
 - Analogous approach to composite design in other fields (eg, aerospace)
 - Broad material set for best mechanical and electrical performance

Maximum Allowable Current (MAC) vs Current Carrying Capability (CCC)

MAC to CCC Ratio is not constant, is probe architecture dependent*

Current Capability (A)

sem

SEMICON° Korea2016 Source: "Determining Probe's Maximum Allowable

Current", Kister et al, SWTW 2015

These 2-D Layouts are Populated With Structures That Require Low Probe Forces

- Typical SnAg damage (d) requirement <50% of pillar diameter (D)
 - Additional requirements on probe mark topology (notching, smearing, etc.)
 - Imposed by assembly constraints (reliability)
 - Met with probe forces of <2-3g for 30um < D < 40um

At Low Force, Probe Material and Geometry Optimization Required for Stable Electrical Contact

Source: Data from Wittig et al, SWTW 2011

There are More and More of These Probes in Each Card

• Two primary drivers/causes (roughly equal influences)

1. Increased parallelism – more DUTs for test cost reduction

2. Increased probes per DUT – more test content and complexity per DUT

Probe Assembly Throughput Is Becoming An Issue for Probe Card Cycle-time @ 80um CuP Pitch

Time-to-Volume Ramp-up @ 80um CuP Pitch

What if 5 or 10 cards are needed in a week to address peak demand?

Summary

- Static trend of grid-array packaging pitch is turning into rapid reduction
 - 150um -> 130um -> 100 -> 80um -> sub-50um
- Grid-array assembly pitch roadmap is converging with 2.5/3D TSV Cu Pillars
 - pitch, bump geometry, bump material sets
- Conventional technology can't keep up with the current trend
 - Low-force, Alignment, Current Carrying Capability, Assembly Method
- MEMS probe contact technology is required to keep up with the increase in packaging I/O density and decrease in pitch
- FormFactor is developing multiple contactor technology to address the probe/test challenges for 2.5D/3D structures
- A complete Contact technology Roadmap for Cu Pillar uBumps and Silicon Interposer probing

