Advanced computing and quantum computing devices require cryogenic conditions for the processor itself as well as the control chips that drive microwave signal to the processor. These advanced devices typically include niobium or aluminum superconducting circuits, and their support chips are based on cryogenic compatible CMOS structures. Bringing this new technology from the research and development phase, out of the lab and into engineering scale production and ultimately volume production requires specialized tools to test, measure, and deploy the advanced devices all in sub-4K environments. The major bottlenecks include time-consuming wire bonding, expensive packaging processes prior to device cooldown, and long cooldown times for dilution refrigerators.
FormFactor is the leading enabler of quantum computing developers with its suite of cryogenic test and measurement tools as well as deployment solutions. We discuss a customer case study implementing cryogenic wafer probing on SFQ circuits to obtain statistical datasets in hours that would otherwise take weeks or months, a new tool for rapid die testing that makes use of a cryogenic high-density MEMS probe head, enabling photonics probing below 2K, and the deployment of quantum devices in milli-Kelvin dilution refrigerator cryostats with a probe socket interface.
By clicking [Submit], you are providing FormFactor with your personal data. Personal data is used in accordance with FormFactor's Privacy Policy.
Δ